Search results

1 – 10 of 763
Book part
Publication date: 19 April 2024

Lars Mjøset

This study investigates Rokkan's research programme in the light of the differences between case- and variables-based methodologies. Three phases of the research process are…

Abstract

This study investigates Rokkan's research programme in the light of the differences between case- and variables-based methodologies. Three phases of the research process are distinguished. Studying the way Rokkan actually proceeded in the research within his Europe project, we find that he follows the protocols of case-methodologies such as grounded theory. In the second phase of the research process, however, he constructs variables-based models as tools for his macro-historical comparisons. To get to variables from the sensitizing concepts coded in the first phase, Rokkan defines his variables as close to cases as possible: variables as nominal level typologies, types as variable values. He thus faces two interrelated dilemmas. First, a philosophy of science dissonance: he legitimates his research only with reference to a variable-methodology, while his research is thoroughly case based. Second, a paradox of double coding: using variable-based models in the second phase, the status of the knowledge available in the first phase memos is degraded. Rokkan cannot decide between the two main solutions to these dilemmas: The first solution is to discard his heterogeneous data, instead working only with homogeneous data that opens up to more consistently variables-oriented research. The second solution is to replace the notion of variables/variable values with typology/types, thereby returning to cases, pursuing comparative case reconstructions in the third phase of research. The study concludes in favour of the second solution.

Details

A Comparative Historical and Typological Approach to the Middle Eastern State System
Type: Book
ISBN: 978-1-83753-122-6

Keywords

Article
Publication date: 4 April 2024

Dong Li, Yu Zhou, Zhan-Wei Cao, Xin Chen and Jia-Peng Dai

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By…

Abstract

Purpose

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By applying this method, detailed information about heat transfer and phase change processes within the pores can be obtained, while also enabling the calculation of larger-scale SLPT problems, such as shell-and-tube phase change heat storage systems.

Design/methodology/approach

Three-dimensional (3D) pore-scale enthalpy-based LB model is developed. The computational input parameters at the REV scale are derived from calculations at the pore scale, ensuring consistency between the two scales. The approaches to reconstruct the 3D porous structure and determine the REV of metal foam were discussed. The implementation of conjugate heat transfer between the solid matrix and the solid−liquid phase change material (SLPCM) for the proposed model is developed. A simple REV-scale LB model under the local thermal nonequilibrium condition is presented. The method of bridging the gap between the pore-scale and REV-scale enthalpy-based LB models by the REV is given.

Findings

This coupled method facilitates detailed simulations of flow, heat transfer and phase change within pores. The approach holds promise for multiscale calculations in latent heat storage devices with porous structures. The SLPT of the heat sinks for electronic device thermal control was simulated as a case, demonstrating the efficiency of the present models in designing and optimizing SLPT devices.

Originality/value

A coupled pore-scale and REV-scale LB method as a numerical tool for investigating phase change in porous materials was developed. This innovative approach allows for the capture of details within pores while addressing computations over a large domain. The LB method for simulating SLPT from the pore scale to the REV scale was given. The proposed method addresses the conjugate heat transfer between the SLPCM and the solid matrix in the enthalpy-based LB model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 April 2024

Ania Izabela Rynarzewska and Larry Giunipero

The objective of this paper is to further the understanding of netnography as a research method for supply chain academics. Netnography is a method for gathering and gaining…

Abstract

Purpose

The objective of this paper is to further the understanding of netnography as a research method for supply chain academics. Netnography is a method for gathering and gaining insight from industry-specific online communities. We prescribe that viewing netnography through the lens of the supply chain will permit researchers to explore, discover, understand, describe or report concepts or phenomena that have previously been studied via survey research or quantitative modeling.

Design/methodology/approach

To introduce netnography to supply chain research, we propose a framework to guide how netnography can be adopted and used. Definitions and directions are provided, highlighting some of the practices within netnographic research.

Findings

Netnography provides the researcher with another avenue to pursue answers to research questions, either alone or in conjunction with the dominant methods of survey research and quantitative modeling. It provides another tool in the researchers’ toolbox to engage practitioners in the field.

Originality/value

The development of netnography as a research method is associated with Robert Kozinets. He developed the method to study online communities in consumer behavior. We justify why this method can be applied to supply chain research, how to collect data and provide research examples of its use. This technique has room to grow as a supply chain research method.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 May 2024

Lingfei Zhang, Longfeng Hou and Yihao Tao

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring…

Abstract

Purpose

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring involves utilizing specially designed equipment to secure a ship at a designated berth. During the process of water jet propulsion, the single propeller operates within a complex and turbulent three-dimensional flow. Hence, studying the coupling between the water jet propeller and the hull is critical to comprehending the characteristics of the device and the distribution of the flow field in detail.

Design/methodology/approach

Firstly, we conducted computational fluid dynamics (CFD)-based self-propulsion calculations to evaluate the interaction between the hull and the propeller. We subsequently analyzed the propeller's performance and the forces acting on the hull to understand how the presence or absence of the hull influenced the water jet propeller. Finally, we performed calculations and analysis of the cavitation characteristics of the coupling between the hull and the water jet propeller, considering different rotational speeds and water depths at the bottom of the pool.

Findings

The study demonstrated that the presence of the hull boundary layer under the hull-propeller coupling condition led to reduced uniformity of propeller inlet flow and lower efficiency of the propulsion pump. However, it also increased the bias toward low-flow conditions. Additionally, increasing the impeller speed led to a gradual increase in the cavitation volume within the water jet propeller, resulting in a gradual decrease in the propeller's performance.

Originality/value

This research provides the technical support required for effective design and operation of water jet propulsion systems. This paper involves studying and analyzing the performance and flow field of the coupling between the hull and propeller under mooring conditions with a specified hull model.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 6 May 2024

Andreas Gschwentner, Manfred Kaltenbacher, Barbara Kaltenbacher and Klaus Roppert

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various…

Abstract

Purpose

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the assumption of homogenized global material parameters is no longer feasible. This paper aims to present the general methodology and two different solution strategies for determining the local magnetic material properties using reference and simulation data.

Design/methodology/approach

The general methodology combines methods based on measurement, numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to characterize electrical steel sheets locally. Based on the measurement data and results from the finite element simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi Newton method (QNM) using Broyden's update formula to approximate the Jacobian and the second is an adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example with a linear material model is considered.

Findings

The QNM and the adjoint method show similar convergence behavior for two different cutting-edge effects. Furthermore, considering a priori information improved the convergence rate. However, no impact on the stability and the remaining error is observed.

Originality/value

The presented methodology enables a fast and simple determination of the local magnetic material properties of electrical steel sheets without the need for a large number of samples or special preparation procedures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2024

Mikias Gugssa, Long Li, Lina Pu, Ali Gurbuz, Yu Luo and Jun Wang

Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However…

Abstract

Purpose

Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However, it is still challenging to implement automated safety monitoring methods in near real time or in a time-efficient manner in real construction practices. Therefore, this study developed a novel solution to enhance the time efficiency to achieve near-real-time safety glove detection and meanwhile preserve data privacy.

Design/methodology/approach

The developed method comprises two primary components: (1) transfer learning methods to detect safety gloves and (2) edge computing to improve time efficiency and data privacy. To compare the developed edge computing-based method with the currently widely used cloud computing-based methods, a comprehensive comparative analysis was conducted from both the implementation and theory perspectives, providing insights into the developed approach’s performance.

Findings

Three DL models achieved mean average precision (mAP) scores ranging from 74.92% to 84.31% for safety glove detection. The other two methods by combining object detection and classification achieved mAP as 89.91% for hand detection and 100% for glove classification. From both implementation and theory perspectives, the edge computing-based method detected gloves faster than the cloud computing-based method. The edge computing-based method achieved a detection latency of 36%–68% shorter than the cloud computing-based method in the implementation perspective. The findings highlight edge computing’s potential for near-real-time detection with improved data privacy.

Originality/value

This study implemented and evaluated DL-based safety monitoring methods on different computing infrastructures to investigate their time efficiency. This study contributes to existing knowledge by demonstrating how edge computing can be used with DL models (without sacrificing their performance) to improve PPE-glove monitoring in a time-efficient manner as well as maintain data privacy.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 May 2024

Mamun Mishra and Bibhuti Bhusan Pati

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability…

Abstract

Purpose

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability, which are the two major issues with the islanding detection methods, are addressed here. The purpose of this paper is to devise an islanding detection method with zero NDZ and, which will be applicable to all types of renewable energy sources using the sequence components of the point of common coupling voltage.

Design/methodology/approach

Here, a parameter using the sequence components is derived to devise an islanding detection method. The parameter derived from the sequence components of point of common coupling voltage is analysed using wavelet transform. Various operating conditions, such as islanding and non-islanding, are considered for several test systems to evaluate the performance of the proposed method. All the simulations are carried out in Simulink/MATLAB environment.

Findings

The results showed that the proposed method has zero NDZ for both inverter- and synchronous generator-based renewable energy sources. In addition, the proposed method works satisfactorily as per the IEEE 1547 standards requirement.

Originality/value

Performance of the proposed method has been tested in several test systems and is found to be better than some conventional methods.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 May 2024

Tian-Yu Wu, Jianfei Zhang, Yanjun Dai, Tao-Feng Cao, Kong Ling and Wen-Quan Tao

To present the detailed implementation processes of the IDEAL algorithm for two-dimensional compressible flows based on Delaunay triangular mesh, and compare the performance of…

Abstract

Purpose

To present the detailed implementation processes of the IDEAL algorithm for two-dimensional compressible flows based on Delaunay triangular mesh, and compare the performance of the SIMPLE and IDEAL algorithms for solving compressible problems. What’s more, the implementation processes of Delaunay mesh generation and derivation of the pressure correction equation are also introduced.

Design/methodology/approach

Programming completely in C++.

Findings

Five compressible examples are used to test the SIMPLE and IDEAL algorithms, and the comparison with measurement data shows good agreement. The IDEAL algorithm has much better performance in both convergence rate and stability over the SIMPLE algorithm.

Originality/value

The detail solution procedure of implementing the IDEAL algorithm for compressible flows based on Delaunay triangular mesh is presented in this work, seemingly first in the literature.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 763