Search results

1 – 4 of 4
Article
Publication date: 26 November 2021

Vahid Heydari, Zaker Bahreini and Majid Abdouss

The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings…

Abstract

Purpose

The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings (TCCs) fix the thermal condition of the spacecraft acceptable for its components. This is possible by diffusely reflecting all effective ultraviolet (UV), visible (VIS) and near infrared (IR) (NIR) wavelengths of solar radiation and emmition of IR energy. The most commonly used TCCs have used ZnO as a pigment, but absorption of the UV light by ZnO pigment can change the ideal condition of these TCCs. The aim of his study is the using the porous ZnO particles as pigment to prevent the UV absorption.

Design/methodology/approach

To enhance the efficiency of these coatings, in the present study, nano-porous zinc oxide particles were synthesized and used as pigments for white TCCs.

Findings

The results revealed that the proposed TCC (TPZ), Thermal control coating with porous ZnO had better reflection (scattering) and emittance properties in comparison with the coating using ZnO as a pigment (TZ coating); so this coating had a solar absorptance value equal to 0.141, whereas this value for TZ was 0.150. Furthermore, TPZ showed higher thermal emittance (0.937) in comparison with TZ (0.9). These changes were because of the improvement in the refractive index, shape and surface area of the pigments. The general trend of the scattering coefficients for the prepared coating, as calculated from the Kubelka–Munk equation, showed that scattering was more efficient in the UV region, as compared with the TCC containing ZnO pigments.

Originality/value

This type of pigment for the first time is evaluated in TCCs.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 September 2017

Zaker Bahreini, Vahid Heydari and Zahra Namdari

Mechanical and chemical properties of acrylic-melamine automotive clear coat in the presence of different percentages of well dispersed nano-layered sodium montmorillonite…

Abstract

Purpose

Mechanical and chemical properties of acrylic-melamine automotive clear coat in the presence of different percentages of well dispersed nano-layered sodium montmorillonite (Na-MMT) silicate particles were investigated. For this purpose, prepared dry clear coat film samples were subjected to the entire standard test series, usually carried out in automotive coating industry.

Design/methodology/approach

Effects of adding different percentages of nano-layered silicate on mechanical and chemical properties of acrylic-melamine automotive clear coat were investigated. To increase the compatibility of nanoclays with polymer matrix of clear coat, the surface of nanoclays was modified by benzalkonium chloride as a cationic surfactant. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization and comparison between clays before and after modification, and also after dispersion in coating. Prepared dry clear coat film samples subjected to the test series are usually carried out in automotive coating industry.

Findings

The results indicated that incorporation of 1 and 2 Wt.% of nano-layered silicate caused desired improvement in chemical and physical properties of the acrylic-melamine clear coat. Increasing the percentage of nanoclay to over 2 Wt.% caused damage in some properties such as hardness, cupping and gloss.

Research limitations/implications

All materials and methods were used in this research are industrial grade. Therefore, the introduced modified clear coat sample has potential for commercial production as an automotive clear coat.

Originality/value

As far as it was searched in the literature, effects of adding nanoclay particles on mechanical and physical properties of different clear coats, such as epoxy clear coat, have been investigated in a few researches, but in this research, common and special tests which are necessary in automotive coating industry have been ignored. In the present study for the first time, acrylic-melamine clear coat was subjected to modification using nano-clay, and also, the most common industrial test methods were used for investigation of mechanical and chemical properties.

Details

Pigment & Resin Technology, vol. 46 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 September 2009

Zaker Bahreini

The purpose of this paper is to synthesise, characterise and find out properties of some new arylazopyridone disperse dyes, bearing different substituents on coupling component of…

Abstract

Purpose

The purpose of this paper is to synthesise, characterise and find out properties of some new arylazopyridone disperse dyes, bearing different substituents on coupling component of the dyes.

Design/methodology/approach

The dyes are synthesised by diazotisation, coupling and cyclization reactions, starting from various aryldiazonium salts and different β‐diketoesters followed by condensation with cyanoacetamide. The structures of these dyes are characterised and confirmed by melting point, elemental analysis, infrared, ultraviolet‐visible spectroscopy (UV/VIS) and nuclear magnetic resonance (1H‐NMR) data. Their absorption properties in different solvents are also investigated.

Findings

The wavelength of maximum absorptions, molar extinction coefficients are strongly dependent on the electron donating ability of the substituents on the coupling moiety. The absorption bands of these dyes move towards longer wavelength as the polarity of the solvents and electron density of substituents on the coupling moiety increase. These dyes are chromophorically strong as evidenced by molar extinction coefficient in solvents.

Originality/value

In this paper, four series of arylazopyridone dyes (21 dyes) are synthesised and characterised. They have not been registered in the literature previously.

Details

Pigment & Resin Technology, vol. 38 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2016

Zaker Bahreini, Vahid Heydari, Ali N. Hekmat, Minoo Taheri, Behrouz Vahid and Leila Moradkhannejhad

This paper aims to introduce two methods for immobilisation of TiO2 nanoparticles on a glass plate by means of silicon resin as a medium. Then, to ensure the effectiveness of…

Abstract

Purpose

This paper aims to introduce two methods for immobilisation of TiO2 nanoparticles on a glass plate by means of silicon resin as a medium. Then, to ensure the effectiveness of these stabilisation methods, the photocatalytic degradation and mineralisation of the dye C.I. Reactive Blue 21 (RB21), as a model organic pollutant, were compared using these immobilised systems and the suspended one utilizing UV and sunlight irradiations individually.

Design/methodology/approach

TiO2 nanoparticles were supported onto a glass support by silicon resin as an adhesion agent by spraying of TiO2 nanoparticles on the resin surface, which covered the glass plate or brushing the mixture of TiO2 and the resin onto the glass. The characteristics of the applied nano-TiO2 were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Brunauer

Emmett–Teller. Photocatalytic degradation and mineralisation of C.I. Reactive Blue 21 (RB21) by two immobilised systems were compared with suspended system in a batch mode under UV and sunlight irradiations after 2 h of treatment.

Findings

The results showed that these immobilised modes had efficiencies, including 82-87 per cent degradation of RB21 and 52-58 per cent decrease in chemical oxygen demand (COD) for the operational time of 120 min, comparable to that of the suspended mode (91 per cent degradation of RB21 and, consequently, COD is decreased by 65 per cent). Comparison between photocatalytic efficiencies of two immobilised systems revealed that coating by spraying method performed better than brushing one due to more available surface area of TiO2. Finally, the results obtained from the mentioned supported systems under sunlight indicated the efficiencies about 87 to 89 per cent in comparison of the suspension system regardless of the reaction time enhancement up to 15 h compared to the UV irradiation.

Research limitations/implications

In this research, the fixation of TiO2 nanoparticles on a substrate such as normal glass by an easy, inexpensive, durable, repairable and repeatable technique for wastewater treatment was introduced. Due to the simplicity and cheapness of these stabilisation methods and as these stabilisation methods are applicable on other substrates such as concrete, ceramics, etc., you can use these methods in major scales for purification of contaminated water, for example for stabilisation of TiO2 nanoparticles on wall pool utilized for water purification can be used.

Originality/value

Two introduced immobilisation methods in this study are novel. The photocatalytic efficiency of these immobilised systems in degradation of water contaminants was investigated by using these systems in degradation and mineralisation of the dye C.I. Reactive Blue 21 (RB21), as a model organic pollutant compared with same TiO2 nanoparticles in an aqueous suspension system under UV light. Furthermore, this paper investigated replacing of inexpensive sources of UV light instead of UV lamps, and then the same photocatalytic reactions were carried out under sunlight as a UV source and degradation efficiencies by two UV sources were compared.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 4 of 4