Search results

1 – 10 of over 4000
Article
Publication date: 1 November 2022

E. Nicole Melton, George B. Cunningham, Jeffrey D. MacCharles and Risa F. Isard

Sport organizations increasingly emphasize their support for lesbian, gay, bisexual, transgender and queer (LGBTQ) inclusion by promoting a perfect score on the Athlete Ally…

Abstract

Purpose

Sport organizations increasingly emphasize their support for lesbian, gay, bisexual, transgender and queer (LGBTQ) inclusion by promoting a perfect score on the Athlete Ally Equality Index, partnering with nonprofits to increase awareness of LGBTQ individuals in sport (e.g. Rainbow Laces campaign), or hosting a pride night for LGBTQ fans. Despite these and similar efforts, LGBTQ fans historically have felt unwelcome in sport settings, thereby signaling the need for inclusive fan codes of conduct. The purpose of this study was to examine both the prevalence and antecedents of such policies.

Design/methodology/approach

Using publicly available data sources, the authors focused on 350 Division 1 college athletic departments in the USA.

Findings

Results illustrate factors at both the macro (i.e. institution) and meso- (i.e. athletic department) levels interact to explain whether a school will possess a fan code of conduct. Specifically, research-intensive institutions with strong gender equity are more likely to possess a code of conduct than schools that are not research oriented and have weak gender equity. This project extends the understanding of LBGTQ inclusion in the sports industry.

Originality/value

The current study is the first to examine the prevalence and predictors of LGBTQ-inclusive fan codes of conduct. Understanding these dynamics can help athletic programs that want to create safe and inclusive sport spaces for LGBTQ fans and spectators.

Details

International Journal of Sports Marketing and Sponsorship, vol. 24 no. 3
Type: Research Article
ISSN: 1464-6668

Keywords

Article
Publication date: 14 September 2023

Huseyin Tunc and Murat Sari

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Abstract

Purpose

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Design/methodology/approach

The parabolic AD equations are reduced to the nonhomogeneous elliptic system of partial differential equations by utilizing the Chebyshev spectral collocation method (ChSCM) in the temporal variable. The implicit-explicit local differential transform method (IELDTM) is constructed over two- and three-dimensional meshes using continuity equations of the neighbor representations with either explicit or implicit forms in related directions. The IELDTM yields an overdetermined or underdetermined system of algebraic equations solved in the least square sense.

Findings

The IELDTM has proven to have excellent convergence properties by experimentally illustrating both h-refinement and p-refinement outcomes. A distinctive feature of the IELDTM over the existing numerical techniques is optimizing the local spatial degrees of freedom. It has been proven that the IELDTM provides more accurate results with far fewer degrees of freedom than the finite difference, finite element and spectral methods.

Originality/value

This study shows the derivation, applicability and performance of the IELDTM for solving 2D and 3D advection-diffusion equations. It has been demonstrated that the IELDTM can be a competitive numerical method for addressing high-space dimensional-parabolic partial differential equations (PDEs) arising in various fields of science and engineering. The novel ChSCM-IELDTM hybridization has been proven to have distinct advantages, such as continuous utilization of time integration and optimized formulation of spatial approximations. Furthermore, the novel ChSCM-IELDTM hybridization can be adapted to address various other types of PDEs by modifying the theoretical derivation accordingly.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 5 April 2024

Taining Wang and Daniel J. Henderson

A semiparametric stochastic frontier model is proposed for panel data, incorporating several flexible features. First, a constant elasticity of substitution (CES) production…

Abstract

A semiparametric stochastic frontier model is proposed for panel data, incorporating several flexible features. First, a constant elasticity of substitution (CES) production frontier is considered without log-transformation to prevent induced non-negligible estimation bias. Second, the model flexibility is improved via semiparameterization, where the technology is an unknown function of a set of environment variables. The technology function accounts for latent heterogeneity across individual units, which can be freely correlated with inputs, environment variables, and/or inefficiency determinants. Furthermore, the technology function incorporates a single-index structure to circumvent the curse of dimensionality. Third, distributional assumptions are eschewed on both stochastic noise and inefficiency for model identification. Instead, only the conditional mean of the inefficiency is assumed, which depends on related determinants with a wide range of choice, via a positive parametric function. As a result, technical efficiency is constructed without relying on an assumed distribution on composite error. The model provides flexible structures on both the production frontier and inefficiency, thereby alleviating the risk of model misspecification in production and efficiency analysis. The estimator involves a series based nonlinear least squares estimation for the unknown parameters and a kernel based local estimation for the technology function. Promising finite-sample performance is demonstrated through simulations, and the model is applied to investigate productive efficiency among OECD countries from 1970–2019.

Article
Publication date: 26 December 2023

Hai Le and Phuong Nguyen

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open…

Abstract

Purpose

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open economy New Keynesian dynamic stochastic general equilibrium (DSGE) model. The model encompasses several essential characteristics, including incomplete financial markets, incomplete exchange rate pass-through, deviations from the law of one price and a banking sector. The authors consider generalized Taylor rules, in which policymakers adjust policy rates in response to output, inflation, credit growth and exchange rate fluctuations. The marginal likelihoods are then employed to investigate whether the central bank responds to fluctuations in the exchange rate and credit growth.

Design/methodology/approach

This study constructs a small open economy DSGE model and then estimates the model using Bayesian methods.

Findings

The authors demonstrate that the monetary authority does target exchange rates, whereas there is no evidence in favor of incorporating credit growth into the policy rules. These findings survive various robustness checks. Furthermore, the authors demonstrate that domestic shocks contribute significantly to domestic business cycles. Although the terms of trade shock plays a minor role in business cycles, it explains the most significant proportion of exchange rate fluctuations, followed by the country risk premium shock.

Originality/value

This study is the first attempt at exploring the relevance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Book part
Publication date: 5 April 2024

Badi H. Baltagi

This chapter revisits the Hausman (1978) test for panel data. It emphasizes that it is a general specification test and that rejection of the null signals misspecification and is…

Abstract

This chapter revisits the Hausman (1978) test for panel data. It emphasizes that it is a general specification test and that rejection of the null signals misspecification and is not an endorsement of the fixed effects estimator as is done in practice. Non-rejection of the null provides support for the random effects estimator which is efficient under the null. The chapter offers practical tips on what to do in case the null is rejected including checking for endogeneity of the regressors, misspecified dynamics, and applying a nonparametric Hausman test, see Amini, Delgado, Henderson, and Parmeter (2012, chapter 16). Alternatively, for the fixed effects die hard, the chapter suggests testing the fixed effects restrictions before adopting this estimator. The chapter also recommends a pretest estimator that is based on an additional Hausman test based on the difference between the Hausman and Taylor estimator and the fixed effects estimator.

Book part
Publication date: 5 April 2024

Feng Yao, Qinling Lu, Yiguo Sun and Junsen Zhang

The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the…

Abstract

The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the varying coefficients by a series method. We then use the pilot estimates to perform a one-step backfitting through local linear kernel smoothing, which is shown to be oracle efficient in the sense of being asymptotically equivalent to the estimate knowing the other components of the varying coefficients. In both steps, the authors remove the fixed effects through properly constructed weights. The authors obtain the asymptotic properties of both the pilot and efficient estimators. The Monte Carlo simulations show that the proposed estimator performs well. The authors illustrate their applicability by estimating a varying coefficient production frontier using a panel data, without assuming distributions of the efficiency and error terms.

Details

Essays in Honor of Subal Kumbhakar
Type: Book
ISBN: 978-1-83797-874-8

Keywords

Article
Publication date: 23 October 2023

Yerui Fan, Yaxiong Wu and Jianbo Yuan

This study aims to improve the muscle model control performance of a tendon-driven musculoskeletal system (TDMS) to overcome disadvantages such as multisegmentation and strong…

Abstract

Purpose

This study aims to improve the muscle model control performance of a tendon-driven musculoskeletal system (TDMS) to overcome disadvantages such as multisegmentation and strong coupling. An adaptive network controller (ANC) with a disturbance observer is established to reduce the modeling error of the musculoskeletal model and improve its antidisturbance ability.

Design/methodology/approach

In contrast to other control technologies adopted for musculoskeletal humanoids, which use geometric relationships and antagonist inhibition control, this study develops a method comprising of three parts. (1) First, a simplified musculoskeletal model is constructed based on the Taylor expansion, mean value theorem and Lagrange–d’Alembert principle to complete the decoupling of the muscle model. (2) Next, for this simplified musculoskeletal model, an adaptive neuromuscular controller is designed to acquire the muscle-activation signal and realize stable tracking of the endpoint of the muscle-driven robot relative to the desired trajectory in the TDMS. For the ANC, an adaptive neural network controller with a disturbance observer is used to approximate dynamical uncertainties. (3) Using the Lyapunov method, uniform boundedness of the signals in the closed-loop system is proved. In addition, a tracking experiment is performed to validate the effectiveness of the adaptive neuromuscular controller.

Findings

The experimental results reveal that compared with other control technologies, the proposed design techniques can effectively improve control accuracy. Moreover, the proposed controller does not require extensive considerations of the geometric and antagonistic inhibition relationships, and it demonstrates anti-interference ability.

Originality/value

Musculoskeletal robots with humanoid structures have attracted considerable attention from numerous researchers owing to their potential to avoid danger for humans and the environment. The controller based on bio-muscle models has shown great performance in coordinating the redundant internal forces of TDMS. Therefore, adaptive controllers with disturbance observers are designed to improve the immunity of the system and thus directly regulate the internal forces between the bio-muscle models.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 26 September 2023

Ruqing Bai, Hakim Naceur, Jinglei Zhao, Jin Yi, Jie Ma, Huayan Pu and Jun Luo

In this paper, the standard Peridynamic Timoshenko beam model accounting for the shear deformation is chosen to describe the thick beam kinematics. Unfortunately, when applied to…

Abstract

Purpose

In this paper, the standard Peridynamic Timoshenko beam model accounting for the shear deformation is chosen to describe the thick beam kinematics. Unfortunately, when applied to very thin beam structures, the standard Peridynamics (PD) encounters the shear locking phenomenon, leading to incorrect solutions.

Design/methodology/approach

PD differs from classical continuum mechanics and other nonlocal theories that do not involve spatial derivatives of the displacement field. PD is based on the integral equation instead of differential equations to handle discontinuities and other singularities.

Findings

The shear locking can be successfully alleviated using the developed selective integration method. In particular, this technique has been implemented in the standard PD, which allows an accurate result for a wide range of slenderness from very thin to thick (10 < L/t < 103) structures. It can also accelerate the computational time for particular dynamic problems using fewer neighboring integration particles. Several numerical examples are solved to demonstrate the effectiveness of the proposed method for modeling beam structures.

Originality/value

The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam available in the literature, especially for very thin structures. A new alternative for the alleviation of shear locking in the Peridynamic Timoshenko beam, using selective integration. Hence the developed Peridynamic Timoshenko beam model is effective for thin and thick structures. A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

Highlights

  1. The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam proposed in the literature, especially for very thin structures.

  2. The developed Peridynamic Timoshenko beam model based on selective integration is effective for thin and thick structures.

  3. A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam proposed in the literature, especially for very thin structures.

The developed Peridynamic Timoshenko beam model based on selective integration is effective for thin and thick structures.

A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2023

Shenika Hankerson and Olivia Williams

This study examined the characteristics of research mentors that successfully support underrepresented racially minoritized undergraduate (URMU) students in education research.

Abstract

Purpose

This study examined the characteristics of research mentors that successfully support underrepresented racially minoritized undergraduate (URMU) students in education research.

Design/methodology/approach

An exploratory case study approach was employed to gain insight into the characteristics. The data sources used to inform this study included surveys and artifacts from eight URMU students who participated in a national grant-funded research apprenticeship fellowship program.

Findings

Results revealed three key findings about the characteristics that research mentors need to possess to successfully support URMU students in education research. These characteristics include a willingness to (1) invest time and effort in the mentor–mentee relationship, (2) share relevant knowledge and expertise about education research and (3) serve as sponsors to support and promote their mentees' educational research goals and endeavors.

Practical implications

The results have the potential to improve the quality of successful research mentorship opportunities for URMU students in education research by demonstrating the qualities and importance of these mentoring relationships. Higher quality mentoring relationships have the power to encourage URMU students to persist into graduate school and/or the education research profession via knowledge sharing, support and social capital. This is particularly important as education research – which still largely privileges Eurocentric research perspectives and methods – continues to take much needed steps toward racial and cultural diversity.

Originality/value

Most undergraduate research mentorship literature – and especially that literature highlighting the needs of URMU students – focuses on students in STEM, leaving gaps in knowledge related to students in education research. By focusing on the latter, this study seeks to extend our knowledge of the research mentorship needs of URMU students in education research.

Details

International Journal of Mentoring and Coaching in Education, vol. 12 no. 2
Type: Research Article
ISSN: 2046-6854

Keywords

1 – 10 of over 4000