Search results

1 – 10 of 11
Article
Publication date: 23 October 2023

Yerui Fan, Yaxiong Wu and Jianbo Yuan

This study aims to improve the muscle model control performance of a tendon-driven musculoskeletal system (TDMS) to overcome disadvantages such as multisegmentation and strong…

Abstract

Purpose

This study aims to improve the muscle model control performance of a tendon-driven musculoskeletal system (TDMS) to overcome disadvantages such as multisegmentation and strong coupling. An adaptive network controller (ANC) with a disturbance observer is established to reduce the modeling error of the musculoskeletal model and improve its antidisturbance ability.

Design/methodology/approach

In contrast to other control technologies adopted for musculoskeletal humanoids, which use geometric relationships and antagonist inhibition control, this study develops a method comprising of three parts. (1) First, a simplified musculoskeletal model is constructed based on the Taylor expansion, mean value theorem and Lagrange–d’Alembert principle to complete the decoupling of the muscle model. (2) Next, for this simplified musculoskeletal model, an adaptive neuromuscular controller is designed to acquire the muscle-activation signal and realize stable tracking of the endpoint of the muscle-driven robot relative to the desired trajectory in the TDMS. For the ANC, an adaptive neural network controller with a disturbance observer is used to approximate dynamical uncertainties. (3) Using the Lyapunov method, uniform boundedness of the signals in the closed-loop system is proved. In addition, a tracking experiment is performed to validate the effectiveness of the adaptive neuromuscular controller.

Findings

The experimental results reveal that compared with other control technologies, the proposed design techniques can effectively improve control accuracy. Moreover, the proposed controller does not require extensive considerations of the geometric and antagonistic inhibition relationships, and it demonstrates anti-interference ability.

Originality/value

Musculoskeletal robots with humanoid structures have attracted considerable attention from numerous researchers owing to their potential to avoid danger for humans and the environment. The controller based on bio-muscle models has shown great performance in coordinating the redundant internal forces of TDMS. Therefore, adaptive controllers with disturbance observers are designed to improve the immunity of the system and thus directly regulate the internal forces between the bio-muscle models.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 March 2023

Jianbo Yuan, Yerui Fan and Yaxiong Wu

This study aims to propose a novel lightweight tendon-driven musculoskeletal arm (LTDM-arm) robot with a flexible series–parallel mixed skeletal joint structure and modularized…

Abstract

Purpose

This study aims to propose a novel lightweight tendon-driven musculoskeletal arm (LTDM-arm) robot with a flexible series–parallel mixed skeletal joint structure and modularized artificial muscle system (MAMS). The proposed LTDM-arm exhibits human-like flexibility, safety and operational accuracy. In addition, to improve the safety and stability of the LTDM-arm, a control method is proposed to solve local artificial muscle overload accidents.

Design/methodology/approach

The proposed LTDM-arm comprises seven degrees of freedom skeletons, 15 MAMSs and various sensor systems (joint sensing, muscle tension sensing, visual sensing, etc.). It retains the morphology of a human skeleton (humerus, ulna and radius) and a simplified muscle configuration. This study proposes an input saturation control with full-state constraints to reduce local artificial muscle overload accidents caused by redundant muscle tension calculations.

Findings

3D circular trajectory experiments were conducted to verify the stability of the control method and the flexibility of the LTDM-arm. The results showed that the average error of the muscle length was approximately 0.35 mm (0.38%), which indicates that the proposed control scheme can make the output follow the target trajectory while ensuring constraint satisfaction.

Originality/value

The human arm is capable of performing compliant operations rapidly, flexibly and robustly in unstructured environments. Existing musculoskeletal arm robots lack simulations of the full morphology of the human arm and are insufficient in dexterity. However, the flexibility and safety features of the proposed LTDM-arm were consistent with that of the human arm. Therefore, this study offers a new approach for investigating the advantages of the musculoskeletal system and the concepts of muscle control.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Abstract

Details

Economics, Econometrics and the LINK: Essays in Honor of Lawrence R.Klein
Type: Book
ISBN: 978-0-44481-787-7

Article
Publication date: 19 July 2021

Xiaojing Feng, Bin Cui, Yaxiong Liu, Lianggang Li, Xiaojun Shi and Xiaodong Zhang

The purpose of this paper is to solve the problems of poor mechanical properties, high surface roughness and waste support materials of thin-walled parts fabricated by…

Abstract

Purpose

The purpose of this paper is to solve the problems of poor mechanical properties, high surface roughness and waste support materials of thin-walled parts fabricated by flat-layered additive manufacturing process.

Design/methodology/approach

This paper proposes a curved-layered material extrusion modeling process with a five-axis motion mechanism. This process has advantages of the platform rotating, non-support printing and three-dimensional printing path. First, the authors present a curved-layered algorithm by offsetting the bottom surface into a series of conformal surfaces and a toolpath generation algorithm based on the geodesic distance field in each conformal surface. Second, they introduce a parallel five-axis printing machine consisting of a printing head fixed on a delta-type manipulator and a rotary platform on a spherical parallel machine.

Findings

Mechanical experiments show the failure force of the five-axis printed samples is 153% higher than that of the three-axis printed samples. Forming experiments show that the surface roughness significantly decreases from 42.09 to 18.31 µm, and in addition, the material consumption reduces by 42.90%. These data indicate the curved-layered algorithm and five-axis motion mechanism in this paper could effectively improve mechanical properties and the surface roughness of thin-walled parts, and realize non-support printing. These methods also have reference value for other additive manufacturing processes.

Originality/value

Previous researchers mostly focus on printing simple shapes such as arch or “T”-like shape. In contrast, this study sets out to explore the algorithm and benefits of modeling thin-walled parts by a five-axis machine. Several validated models would allow comparability in five-axis printing.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2003

Liu Yaxiong, Li Dichen, Lu Bingheng, He Sanhu and Li Gang

Traditional standard bone substitutes cannot realize the individualized matching for the bones of different patients. In order to make a bone substitute match the shape of a…

1187

Abstract

Traditional standard bone substitutes cannot realize the individualized matching for the bones of different patients. In order to make a bone substitute match the shape of a patient's bone easily, a technology based on reverse engineering (RE) and rapid prototyping (RP) is put forward to design and fabricate a customized bone substitute. By RE, the customized bone substitute is designed according to the CT sectional pictures, and the customized localizer is designed to locate the customized bone substitute in the patient's body at the right position. A customized mandible substitute designed and fabricated by RE and RP has been put into clinical use and is discussed in detail. The results confirm that the advantage of RP in the field of bone restoration is that it can fabricate the customized bone substitute rapidly and accurately.

Details

Rapid Prototyping Journal, vol. 9 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2012

Jiang Wu, Xiaobo Wang, Xianghui Zhao, Chunbao Zhang and Bo Gao

The purpose of this paper is to explore an application of computer‐aided design and manufacture (CAD/CAM) to a process of electronically surveying a scanned dental cast as a prior…

1913

Abstract

Purpose

The purpose of this paper is to explore an application of computer‐aided design and manufacture (CAD/CAM) to a process of electronically surveying a scanned dental cast as a prior stage to producing a sacrificial pattern for a removable partial denture (RPD) metal alloy framework.

Design/methodology/approach

With the introduction of laser scan technology and commercial reverse engineering software, a standard plaster maxillary dental cast with dentition defect was successfully scanned and created as a STL‐formatted digital cast. With the software, the unwanted undercuts were eliminated based on the desired path of insertion. Parts of the RPD framework were then successfully custom‐designed and combined as a whole.

Findings

A sacrificial pattern was produced by rapid prototyping (RP) method and finally casted with chromium cobalt alloy. With suitable finishing process, both the sacrificial pattern and the casted framework fitted the cast well.

Originality/value

The research indicated the feasibility of creating a library of RPD framework components. It is believed that, in the future, with the advance of the techniques, a totally new platform can be developed for the design and fabrication of custom‐fit RPD framework based on the CAD/CAM/RP system.

Details

Rapid Prototyping Journal, vol. 18 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation…

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. 35 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 13 January 2012

Weiguo Bian, Dichen Li, Qin Lian, Xiang Li, Weijie Zhang, Kunzheng Wang and Zhongmin Jin

The purpose of this paper is to fabricate and characterize osteochondral beta‐tricalcium phosphate/collagen scaffold with bio‐inspired design by ceramic stereolithography (CSL…

2125

Abstract

Purpose

The purpose of this paper is to fabricate and characterize osteochondral beta‐tricalcium phosphate/collagen scaffold with bio‐inspired design by ceramic stereolithography (CSL) and gel casting.

Design/methodology/approach

Histological analysis was applied to explore the morphological characteristics of the transitional structure between the bone and the cartilage. The acquired data were used to design biomimetic biphasic scaffolds, which include the bone phase, cartilage phase, and their transitional structure. The engineered scaffolds were fabricated from β‐TCP‐collagen by CSL and gel casting. The cartilage phase was added to the ceramic phase by gel‐casting and freeze drying.

Findings

The resulting ceramic scaffolds were composed of a bone phase with the following properties: 700‐900 μm pore size, 200‐500 μm interconnected pores size, 50‐65 percent porosity, fully interconnected, ∼12 Mpa compressive strength. A suitable binding force between cartilage phase and ceramic phase was achieved by physical locking that was created by the biomimetic transitional structure. Cellular evaluation showed satisfactory results.

Research limitations/implications

This study is the first try to apply CSL to fabricate biological implants with β‐TCP and type‐I collagen. There are still some defects in the composition of the slurry and the fabrication process.

Practical implications

This strategy of osteochondral scaffold fabrication can be implemented to construct an osteochondral complex that is similar to native tissue.

Originality/value

The CSL technique is highly accurate, as well as biologically secure, when fabricating ceramic tissue engineering scaffolds and may be a promising method to construct hard tissue with delicate structures. The present strategy enhances the versatility of scaffold fabrication by RP.

Details

Rapid Prototyping Journal, vol. 18 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2012

Mohammad Vaezi, Chee Kai Chua and Siaw Meng Chou

Today, medical models can be made by the use of medical imaging systems through modern image processing methods and rapid prototyping (RP) technology. In ultrasound imaging…

1227

Abstract

Purpose

Today, medical models can be made by the use of medical imaging systems through modern image processing methods and rapid prototyping (RP) technology. In ultrasound imaging systems, as images are not layered and are of lower quality as compared to those of computerized tomography (CT) and magnetic resonance imaging (MRI), the process for making physical models requires a series of intermediate processes and it is a challenge to fabricate a model using ultrasound images due to the inherent limitations of the ultrasound imaging process. The purpose of this paper is to make high quality, physical models from medical ultrasound images by combining modern image processing methods and RP technology.

Design/methodology/approach

A novel and effective semi‐automatic method was developed to improve the quality of 2D image segmentation process. In this new method, a partial histogram of 2D images was used and ideal boundaries were obtained. A 3D model was achieved using the exact boundaries and then the 3D model was converted into the stereolithography (STL) format, suitable for RP fabrication. As a case study, the foetus was chosen for this application since ultrasonic imaging is commonly used for foetus imaging so as not to harm the baby. Finally, the 3D Printing (3DP) and PolyJet processes, two types of RP technique, were used to fabricate the 3D physical models.

Findings

The physical models made in this way proved to have sufficient quality and shortened the process time considerably.

Originality/value

It is still a challenge to fabricate an exact physical model using ultrasound images. Current commercial histogram‐based segmentation method is time‐consuming and results in a less than optimum 3D model quality. In this research work, a novel and effective semi‐automatic method was developed to select the threshold optimum value easily.

Details

Rapid Prototyping Journal, vol. 18 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 June 2011

Jin Sun, Juntong Xi, Xiaobo Chen and Yaoyang Xiong

The purpose of this paper is to describe a computer‐aided design/manufacturing (CAD/CAM) system for fabricating facial prostheses.

1121

Abstract

Purpose

The purpose of this paper is to describe a computer‐aided design/manufacturing (CAD/CAM) system for fabricating facial prostheses.

Design/methodology/approach

The CAD/CAM system can be used for fabricating custom‐made facial prostheses with symmetrical or asymmetrical features. This system integrates non‐contact structured light scanning, reverse engineering and rapid prototyping manufacturing technology. Fringe projection based on the combination of the phase‐shift and grey‐code methods is used for data collection. A robust approach is proposed to calculate the mid‐plane of the human face without any knowledge of the centroid position or the principal axis in data processing.

Findings

Results show that the proposed method increases the fabrication accuracy and reduces the operating time. Patients were satisfied with the rehabilitation results as the custom‐made facial prostheses fitted them well.

Practical implications

This study improves the fabrication accuracy of facial prostheses. Three‐dimensional data of the facial surface of a patient needing a facial prosthesis were obtained with almost no harm to his body; after a series of robust processes, a precise and suitable aesthetic facial prosthesis was fabricated.

Originality/value

This system has bright prospects for clinical application because of its advantages over other methods in terms of speed, accuracy, safety, cost, etc.

Details

Rapid Prototyping Journal, vol. 17 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 11