Search results

11 – 20 of 33
Article
Publication date: 1 July 2006

Xose M. López‐Fernandez, J. Gyselinck and R. Silveira‐Correa

Aims to study a new outer‐rotor permanent‐magnet brushless DC motor by means of the finite element method.

Abstract

Purpose

Aims to study a new outer‐rotor permanent‐magnet brushless DC motor by means of the finite element method.

Design/methodology/approach

Two practical motor versions are considered for use in light traction at low speed. Special attention is devoted to cogging torque level, magnetic field and performance characteristics.

Findings

The various versions of the studied motor are dependent on the pole‐slot ratio.

Originality/value

The paper studies a new outer‐rotor permanent magnet brushless DC motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Joseph El Hayek and Tadeusz J. Sobczyk

The purpose of this paper is to present a new type of equivalent scheme of multi‐winding transformers.

Abstract

Purpose

The purpose of this paper is to present a new type of equivalent scheme of multi‐winding transformers.

Design/methodology/approach

An inventory representation of relations between currents and flux linkages has been interpreted as a multi‐port purely inductive circuit.

Findings

An equivalent scheme in the form of a multi‐port circuit, and a method of its parameters determination from field computations.

Research limitations/implications

Core losses are not considered in the multi‐port equivalent scheme.

Practical implications

A new equivalent scheme could become a basic tool for modeling multi‐winding transformers.

Originality/value

The introduced multi‐port equivalent scheme eliminates disadvantages of classical T‐type equivalent scheme of transformers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Ivan Sitar, Zarko Janic and Branimir Cucic

The purpose of this paper is to determine the external magnetic field density of the traction transformer for EMU and to find the model for its computation.

Abstract

Purpose

The purpose of this paper is to determine the external magnetic field density of the traction transformer for EMU and to find the model for its computation.

Design/methodology/approach

The magnetic flux density in the surrounding region of the traction transformer was modeled and calculated using FEM. The transformer was modeled in a way that tank, clamps and current sources were taken into account. Most frequent operating modes for the basic 50 Hz current harmonic, and most represented higher harmonic of 1,950 Hz loading current, were analyzed.

Findings

Matching calculated and measured values were obtained on the finished transformer. The developed calculation has proved to be a useful tool for the stray field calculation outside this type of transformer. Calculated values of the flux density are lower then the maximum permitted values defined by the DIN VDE 0848 standard.

Originality/value

This paper presents a study of calculation compared to measurement of magnetic field density outside an oil immersed transformer.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Vasile Topa, Marius Purcar, Calin Munteanu, Laura Grindei, Claudia Pacurar and Ovidiu Garvasiuc

This paper proposes to extend the combination of Extended Finite Element Method (XFEM) and Level Set Method (LSM) from structural mechanics to electromagnetics. Based on this…

Abstract

Purpose

This paper proposes to extend the combination of Extended Finite Element Method (XFEM) and Level Set Method (LSM) from structural mechanics to electromagnetics. Based on this approach, the actual stage of the research work, dedicated to the investigation, development, implementation and validation of a shape optimization methodology, particularly tailored for 2D electric structures is described.

Design/methodology/approach

The proposed numerical approach is based on the efficiency of the XFEM and the flexibility of the LSM, to handle moving material interfaces without remeshing the whole studied domain at each optimization step.

Findings

This approach eliminates the conventional use of discrete finite elements and provides efficient, stable, accurate and faster computation schemes in comparison with other methods.

Research limitations/implications

This research is limited to shape optimization of two‐dimensional electric structures, however, the work can be extended to 3D ones too.

Practical implications

The implementation of the proposed numerical approach for the shape optimization of a planar resistor is hereby described.

Originality/value

The main value of the proposed approach is a powerful and robust numerical shape optimization algorithm that demonstrates outstanding suppleness of handling topological changes, fidelity of boundary representation and a high degree of automation in comparison with other methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Christophe Versèle, Olivier Deblecker and Jacques Lobry

This paper presents a computer‐aided design (CAD) tool for the design of isolated dc‐dc converters.

Abstract

Purpose

This paper presents a computer‐aided design (CAD) tool for the design of isolated dc‐dc converters.

Design/methodology/approach

This tool, developed in Matlab environment, is based on multiobjective optimization (MO) using genetic algorithms. The Elitist Nondominated Sorting Genetic Algorithm is used to perform search and optimization whereas analytical models are used to model the power converters. The design problem requires minimizing the weight, losses and cost of the converter while ensuring the satisfaction of a number of constraints. The optimization variables are, as for them, the operating frequency, the current density, the maximum flux density, the transformer dimensions, the wire diameter, the core material, the conductor material, the converter topology (among Flyback, Forward, Push‐Pull, half‐bridge and full‐bridge topologies), the number of semiconductor devices associated in parallel, the number of cells associated in series or parallel as well as the kinds of input and output connections (serial or parallel) of these cells. Finally, the design of an auxiliary railway power supply is presented and discussed.

Findings

The results show that such tool to design dc‐dc power converters presents several advantages. In particular, it proposes to the designer a set of solutions – instead of a single one – so that he can choose a posteriori which solution best fits the application under consideration. Moreover, interesting solutions not considered a priori can be found with this tool.

Originality/value

To the best of the authors’ knowledge, such a CAD tool including a MO procedure taking several topologies into account has not been suggested so far.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Min‐You Chen, Jin‐qian Zhai, Z.Q. Lang, Feng Sun and Gang Hu

The present study is concerned with the application of a nonlinear frequency analysis approach to the detection and location of water tree degradation of power cable XLPE…

Abstract

Purpose

The present study is concerned with the application of a nonlinear frequency analysis approach to the detection and location of water tree degradation of power cable XLPE insulation without turning off electric power.

Design/methodology/approach

The use of power cable system responses to power line carrier signals are proposed to conduct the required signal analysis for damage location purpose. This technique is based on the fact that the water tree degradation in power cables can make the system behave nonlinearly. Consequently, the location of water tree degradation can be determined by detecting the position of nonlinear components in power cable systems.

Findings

A novel method has been proposed for locating water tree degradation in power cable systems; numerical simulation studies have demonstrated the effectiveness of the new technique.

Originality/value

The proposed technique has the potential to be applied in practice to more effectively resolve the power cable damage location problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Eleonora Riva Sanseverino, Angelo Campoccia, Maria Luisa Di Silvestre and Gaetano Zizzo

The purpose of this paper is to identify a new and simple two‐end algorithm for fault location identification and characterization, in electrical distribution systems.

Abstract

Purpose

The purpose of this paper is to identify a new and simple two‐end algorithm for fault location identification and characterization, in electrical distribution systems.

Design/methodology/approach

The developed diagnostic algorithm is based on a simple model of the network using a lumped parameters representation.

Findings

Test results have proved the approach to be efficient, allowing a precise fault identification and location while not requiring synchronized measures from the two ends.

Research limitations/implications

There is a need for measurement systems at all MV/LV substations.

Practical implications

Applicability with limited investments is not possible where metering systems are not so diffused, although smart grids and DG units require such infrastructures. Moreover, utilities are quite interested in such issues, since the new required quality standards put severe constraints on faults management and clearance.

Originality/value

The paper presents a new and easier diagnostic algorithm for faults diagnosis in distribution systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Ming Zhang, Kaicheng Li and Yisheng Hu

The purpose of this paper is to develop a new method for classification of power quality (PQ) disturbances such as the sag, interruption, swell, harmonic, notch, oscillatory…

Abstract

Purpose

The purpose of this paper is to develop a new method for classification of power quality (PQ) disturbances such as the sag, interruption, swell, harmonic, notch, oscillatory transient and impulsive transient.

Design/methodology/approach

A PQ disturbances classification system based on wavelet packet energy and multiclass support vector machines (MSVM) is proposed to discriminate seven types of PQ disturbances. The PQ disturbance signals are first decomposed into components in different subbands using discrete wavelet packet transform (DWPT). Statistical features of the decomposed signals are required to characterize the PQ disturbances. A MSVM classifier follows to classify the PQ disturbances.

Findings

The proposed method could effectively detect information from disturbance waveforms using DWPT and MSVM techniques, which is verified on over 700 samples.

Research limitations/implications

The classification stage of the proposed method does not differentiate the disturbances occurred simultaneously.

Practical implications

The proposed method possesses high recognition rate, so it is suitable for the PQ monitoring system for detection and classification of disturbances.

Originality/value

The paper describes a new and efficient way of classification of PQ disturbances. In this paper, an attempt has been made to extract efficient features of the PQ disturbances using DWPT. It is observed that these features can help correctly classify the PQ disturbances, even under noisy conditions. The MSVM is compared with artificial neural network (ANN) and it is found that the MSVM classifier gives the better result.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Fikri Serdar Gokhan and Gunes Yilmaz

The aim of the paper is to demonstrate a fast numerical solution for Raman fiber amplifier equations using proposed guess functions and MATLAB intrinsic properties. MATLAB BVP…

Abstract

Purpose

The aim of the paper is to demonstrate a fast numerical solution for Raman fiber amplifier equations using proposed guess functions and MATLAB intrinsic properties. MATLAB BVP solvers are addressed for the solution.

Design/methodology/approach

The guess functions proposed for the solution of RFA equations using MATLAB BVP solvers are derived from Taylor expansion of pump and signal wave near the boundary to specifically obtain convergence for the initial mesh point. The guess functions increase simulation speed significantly. In order to improve the simulation speed further, vectorization and analytical Jacobians are introduced. Comparisons among bvp4c and bvp5c have been made with respect to total pump power, number of signals, vectorization with/without analytical Jacobians, fiber length, relative tolerance and continuation method. The simulations are performed to determine the effect of the run time on the choice of the number of equally spaced mesh points (N) in the initial guess, and thus optimal N values are found.

Findings

MATLAB BVP solvers have been proven to be effective for the numerical solution of RFAs with the proposed guess functions. In particular, with vectorizing, run time reduction is between 2.1 and 5.4 times for bvp4c and between 1.6 and 2.1 times for bvp5c and in addition to vectorizing, with the introduction of the analytical Jacobians, the reduction is between 2.4 and 6.2 times for bvp4c and 1.7 and 2.2 times for bvp5c, respectively, depending on the total pump power between 1,000 mW and 2,000 mW and the number of signals. Also, simulation results show that the efficiency of the solution with proposed guess functions is improved more than six times compared with those of previously reported continuation methods. Results show that the proposed guess functions with the vectorization and analytical Jacobians can be used for the performance evaluation of RFAs for the high power systems/long gain fiber span.

Practical implications

The robust improvement of the solution proposed in this paper lies in the fact that the derived guess functions for the RFAs are highly effective in the sense that they assist the solver to converge to the solution for any total pump power value in a wide range from 1 to 3,000 mW and for any fiber lengths ranging 1 to 200 km which are used in practical applications. Hence, it is practicable for the performance evaluation of the existing RFA networks.

Originality/value

The novelty of this method is that, starting with the co‐propagating single pump and signal RFA schema, the authors derived the guess function specifically for the initial mesh points rather than using its analytical approximations. Moreover, the solution is generalized for co‐/counter propagating pumps/signals with the curve fitted coefficient(s).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Regiane Ragi, Rafael V.T. da Nobrega and Murilo A. Romero

The purpose of this paper is to develop an efficient numerical algorithm for the self‐consistent solution of Schrodinger and Poisson equations in one‐dimensional systems. The goal…

Abstract

Purpose

The purpose of this paper is to develop an efficient numerical algorithm for the self‐consistent solution of Schrodinger and Poisson equations in one‐dimensional systems. The goal is to compute the charge‐control and capacitance‐voltage characteristics of quantum wire transistors.

Design/methodology/approach

The paper presents a numerical formulation employing a non‐uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrödinger equation through the split‐operator method while a relaxation method in the FTCS scheme (“Forward Time Centered Space”) is used to solve the two‐dimensional Poisson equation.

Findings

The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge‐control characteristics and the capacitance‐voltage relationship for a split‐gate quantum wire device.

Originality/value

The paper helps to fulfill the need for C‐V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two‐dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one‐dimensional quantization case, significantly diminishing running time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

11 – 20 of 33