Search results

1 – 10 of 809
To view the access options for this content please click here
Article
Publication date: 6 February 2020

Ramakrishna Shinagam, Guntaka Ajay, Lokanadham Patta and Anand Siva Gandam

Wind power is the one of best natural resources to meet the demands of electricity in India. In this regard, one of engineering college in Visakhapatnam has procured wind

Abstract

Purpose

Wind power is the one of best natural resources to meet the demands of electricity in India. In this regard, one of engineering college in Visakhapatnam has procured wind turbine generators of 200 kWp and got these installed on the rooftop of the college buildings for research and power generation. After starting the mills, huge vibrations were experienced by the staff and students in the laboratories and classrooms. So, the purpose of this paper is to carry out vibration and noise studies on wind turbine generator to identify the problem for high vibrations and suggest a novel method for vibration reduction.

Design/methodology/approach

Experimental vibration and natural frequency investigations are carried when wind velocity around 6.0 m/s using frequency analyzer, impact hammer, condenser microphone and accelerometer. An attempt is made to reduce the vibration and noise level of wind turbine generator by inserting a steel coil spring of 300 mm length having 20 turns in series with turnbuckle D shackle assembly, which is used to connect the wind turbine generator to the hook mounted on slab.

Findings

A high vibration velocity of 9.9 mm/s was observed on at base frame of wind turbine generator. The natural frequencies of hook and slab are observed in between 15 to 20 Hz from the natural frequency test. A high noise of 94.67 dBA is observed at a distance of 1 m from the base of wind turbine generator along the rotational axis of rotor. After modification to the baseline, WTG the vibration and noise levels are reduced to 4.8 mm/sec and 77.76 dBA, respectively.

Originality/value

This is the first time to study the huge vibrations generated in wind turbine generators installed on the rooftop of the college. Developed a novel methodology to reduce the vibrations by inserting a steel coil springs in turnbuckle D shackle assembly of wind turbine generators. After modification, wind turbine generator are running successfully without any high vibrations.

To view the access options for this content please click here
Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a…

Downloads
1593

Abstract

Purpose

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief review of the state of the art in the area of electrical machines and power‐electronic systems for high‐power wind energy generation applications. As the first part of this paper, latest market penetration, current technology and advanced electrical machines are addressed.

Design/methodology/approach

After a short description of the latest market penetration of wind turbines with various topologies globally by the end of 2010 is provided, current wind power technology, including a variety of fixed‐ and variable‐speed (in particular with doubly‐fed induction generator (DFIG) and permanent magnet synchronous generator (PMSG) supplied with partial‐ and full‐power converters, respectively) wind power generation systems, and modern grid codes, is presented. Finally, four advanced electrical‐machine systems, viz., brushless DFIG, open winding PMSG, dual/multi 3‐phase stator‐winding PMSG and magnetic‐gear outer‐rotor PMSG, are identified with their respective merits and challenges for future high‐power wind energy applications.

Findings

For the time being, the gear‐drive DFIG‐based wind turbine is significantly dominating the markets despite its defect caused by mechanical gears, slip rings and brush sets. Meanwhile, direct‐drive synchronous generator, especially utilizing permanent magnets on its rotor, supplied with a full‐capacity power converter has become a more effective solution, particularly in high‐power offshore wind farm applications.

Originality/value

This first part of the paper reviews the latest market penetration of wind turbines with a variety of mature topologies, by summarizing their advantages and disadvantages. Four advanced electrical‐machine systems are selected and identified by distinguishing their respective merits and challenges for future high‐power wind energy applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three…

Downloads
8337

Abstract

Purpose

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades power‐electronic technology has experienced a dramatic evolution. This second part of the paper aims to focus on a comprehensive survey of power converters and their associated control systems for high‐power wind energy generation applications.

Design/methodology/approach

Advanced control strategies, i.e. field‐oriented vector control and direct power control, are initially reviewed for windturbine driven doubly fed induction generator (DFIG) systems. Various topologies of power converters, comprising back‐to‐back (BTB) connected two‐ and multi‐level voltage source converters (VSCs), BTB current source converters (CSCs) and matrix converters, are identified for high‐power windturbine driven PMSG systems, with their respective features and challenges outlined. Finally, several control issues, viz., basic control targets, active damping control and sensorless control schemes, are elaborated for the machine‐ and grid‐side converters of PMSG wind generation systems.

Findings

For high‐power PMSG‐based wind turbines ranging from 3 MW to 5 MW, parallel‐connected 2‐level LV BTB VSCs are the most cost‐effective converter topology with mature commercial products, particularly for dual 3‐phase stator‐winding PMSG generation systems. For higher‐capacity windturbine driven PMSGs rated from 5 MW to 10 MW, medium voltage multi‐level converters, such as 5‐level regenerative CHB, 3‐ and 4‐level FC BTB VSC, and 3‐level BTB VSC, are preferred. Among them, 3‐level BTB NPC topology is the favorite with well‐proven technology and industrial applications, which can also be extensively applicable with open‐end winding and dual stator‐winding PMSGs so as to create even higher voltage/power wind generation systems. Sensorless control algorithms based on fundamental voltages/currents are suggested to be employed in the basic VC/DPC schemes for enhancing the robustness in the entire PMSG‐based wind power generation system, due to that the problems related with electromagnetic interferences in the position signals and the failures in the mechanical encoders can be avoided.

Originality/value

This second part of the paper for the first time systematically reviews the latest state of arts with regard to power converters and their associated advanced control strategies for high‐power wind energy generation applications. It summarizes a variety of converter topologies with pros and cons highlighted for different power ratings of wind turbines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 26 August 2020

Fatima Souad Bezzaoucha, M’hammed Sahnoun and Sidi Mohamed Benslimane

Improving reliability is a key factor in reducing the cost of wind energy, which is strongly influenced by the cost of maintenance operations. In this context, this paper…

Abstract

Purpose

Improving reliability is a key factor in reducing the cost of wind energy, which is strongly influenced by the cost of maintenance operations. In this context, this paper aims to propose a degradation model that describes the phenomenon of fault propagation to apply proactive maintenance that will act on the cause of failure to prevent its reoccurrence as well as to improve future system designs.

Design/methodology/approach

The methodology adopted consists in identifying the different components of a wind turbine, their causes and failure modes, and then, classifying these components according to their causes of failure.

Findings

The result is a classification of the different components of a wind turbine according to their failure causes. From the obtained classification, the authors observed that the failure modes for one component are a failure cause for another component, which describes the phenomenon of failure propagation.

Originality/value

The different classifications existing in the literature depend on the nature, position and function of the different components. The classification of this study consists in grouping the components of a wind turbine according to their failure causes to develop a degradation model considering the propagation of failure in the field of wind turbines.

Details

International Journal of Energy Sector Management, vol. 15 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

To view the access options for this content please click here
Article
Publication date: 2 November 2015

Merzak Aimene, Alireza Payman and Brayima Dakyo

The purpose of this paper is to propose a new nonlinear control algorithm to control a wind turbine based on permanent magnet synchronous generator (PMSG) connected to the…

Abstract

Purpose

The purpose of this paper is to propose a new nonlinear control algorithm to control a wind turbine based on permanent magnet synchronous generator (PMSG) connected to the grid via a back-to-back converter. The control algorithm is composed of a flatness-based method for the machine side convertor (MSC) and a voltage-oriented method for the grid side converter (GSC).

Design/methodology/approach

For the MSC control, the output variable is chosen properly to prove that the system is flat at first. Then, the appropriate reference trajectories are planned on its components. The reference trajectories are such designed that the system operates in maximum power point tracking (MPPT) mode. Finally, state feedback regulators are used to force the system output to follow its reference. To control the GSC, a classical voltage-oriented control method is used.

Findings

The simulation results obtained with a random wind speed are presented in order to prove the validity of the proposed control algorithm. These results show that the system is controlled successfully while it operates in the MPPT mode or in its maximum power limitation mode.

Originality/value

In this paper, a new algorithm based on flatness property is presented to control a variable speed wind turbine based on a PMSG. The proposed control method allows the system to operate in optimal operating modes.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 26 August 2014

Poopak Roshanfekr, Torbjörn Thiringer, Sonja Lundmark and Mikael Alatalo

The purpose of this paper is to investigate how the dc-link voltage for the converter of a wind generator should be selected, i.e. to determine the losses in the generator

Abstract

Purpose

The purpose of this paper is to investigate how the dc-link voltage for the converter of a wind generator should be selected, i.e. to determine the losses in the generator and the converter when using various dc-link voltage levels.

Design/methodology/approach

To presents the efficiency evaluation of 5 MW wind turbine generating systems, two 5 MW surface mounted permanent magnet synchronous generators (PMSG) with medium and low rated voltage is designed. A two-level transistor converter is considered for ac/dc conversion. Three different dc-link voltage levels are used. By using these voltage levels the PMSG is utilized in slightly different ways.

Findings

It is found that the system with the lower voltage machine has slightly higher annual energy efficiency compare to the higher voltage system. Furthermore, it is shown that the best choice for the dc-link voltage level is a voltage between the minimum voltage which gives the desired torque and the voltage which gives Maximum Torque Per Ampere.

Originality/value

A procedure as well as investigations with quantified results on how to find the highest complete drive system efficiency for a wind turbine application. Based on two given PMSG, the most energy-efficient dc-link voltage has been established.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 7 November 2019

Olubayo Moses Babatunde, Damilola Elizabeth Babatunde, Iheanacho Henry Denwigwe, Toyosi Beatrice Adedoja, Oluwaseye Samson Adedoja and Taiwo Emmanuel Okharedia

This study aims to analyze the effects of variations in annual real interest rates in the assessment of the techno-economic feasibility of a hybrid renewable energy system…

Abstract

Purpose

This study aims to analyze the effects of variations in annual real interest rates in the assessment of the techno-economic feasibility of a hybrid renewable energy system (HRES) for an off-grid community.

Design/methodology/approach

Hybrid Optimization of Multiple Energy Resources (HOMER) software is used to propose an HRES for Abadam community in northern Nigeria. The HRES was designed to meet the basic needs of the community over a 25-year project lifespan. Based on the available energy resources in the community, photovoltaic (PV), wind turbine, diesel generator and battery were suggested for integration to serve the load requirements.

Findings

When the annual real interest rates were taken as 10 and 8 per cent, the total amount of total energy fraction from PV, wind turbine and the diesel generator is 28, 57 and 15 per cent, respectively. At these interest rates, wind turbines contributed more energy across all months than other energy resources. The energy resource distribution for 0, 2,4 and 6 per cent annual real interest rates have a similar pattern, but PV contributed a majority of the energy.

Practical implications

This study has used annual real interest and inflation rates dynamic behavior to determine optimal HRES for remote communities. Hence, its analysis will equip decision-makers with the necessary information for accurate planning.

Originality/value

The results of this study can be used to plan and design HRES infrastructure for off-grid communities around the world.

Details

International Journal of Energy Sector Management, vol. 14 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

To view the access options for this content please click here
Article
Publication date: 8 May 2018

Javier Martinez Suarez, Pawel Flaszynski and Piotr Doerffer

The purpose of this paper is to describe numerical investigations focused on the reduction of separation and the aerodynamic enhancement of wind turbine blades by a rod…

Abstract

Purpose

The purpose of this paper is to describe numerical investigations focused on the reduction of separation and the aerodynamic enhancement of wind turbine blades by a rod vortex generator (RVG).

Design/methodology/approach

A flow modelling approach through the use of a Reynolds-averaged Navier–Stokes solver is used. The numerical tools are validated with experimental data for the NREL Phase VI rotor and the S809 aerofoil. The effect of rod vortex generator’s (RVG) configuration on aerofoil aerodynamic performance, flow structure and separation is analysed. RVGs’ chordwise locations and spanwise distance are considered, and the optimum configuration of the RVG is applied to the wind turbine rotor.

Findings

Results show that streamwise vortices created by RVGs lead to modification of flow structure in boundary layer. As a result, the implementation of RVGs on aerofoil has proven to decrease the flow separation and enhance the aerodynamic performance of aerofoils. The effect on flow structure and aerodynamic performance has shown to be dependent on dimensions, chordwise location and spanwise distribution of rods. The implementation of devices with the optimum configuration has shown to increase aerodynamic performance and to significantly reduce separation for selected conditions. Application of rods to the wind turbine rotor has proven to avoid the spanwise penetration of flow separation where applied, leading to reduction of flow separation and to aerodynamic enhancement.

Originality/value

The proposed RVGs have shown potential to enhance the aerodynamic performance of wind turbine rotors and profiles, making devices an alternative solution to the classical vortex generators for wind turbine applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 15 December 2020

Sayyed Ali Akbar Shahriari

This paper aims to propose an 18th-order nonlinear model for doubly fed induction generator (DFIG) wind turbines. Based on the proposed model, which is more complete than…

Abstract

Purpose

This paper aims to propose an 18th-order nonlinear model for doubly fed induction generator (DFIG) wind turbines. Based on the proposed model, which is more complete than the models previously developed, an extended Kalman filter (EKF) is used to estimate the DFIG state variables.

Design/methodology/approach

State estimation is a popular approach in power system control and monitoring because of minimizing measurement noise level and obtaining non-measured state variables. To estimate all state variables of DFIG wind turbine, it is necessary to develop a model that considers all state variables. So, an 18th-order nonlinear model is proposed for DFIG wind turbines. EKF is used to estimate the DFIG state variables based on the proposed model.

Findings

An 18th-order nonlinear model is proposed for DFIG wind turbines. Furthermore, based on the proposed model, its state variables are estimated. Simulation studies are done in four cases to verify the ability of the proposed model in the estimation of state variables under noisy, wind speed variation and fault condition. The results demonstrate priority of the proposed model in the estimation of DFIG state variables.

Originality/value

Evaluating DFIG model to estimate its state variables precisely.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 10 August 2012

Idriss El‐Thalji and Jayantha P. Liyanage

The purpose of this paper is to review the operation and maintenance practices within wind power applications and to clarify practical needs as gaps between researchers…

Downloads
2112

Abstract

Purpose

The purpose of this paper is to review the operation and maintenance practices within wind power applications and to clarify practical needs as gaps between researchers and practitioners.

Design/methodology/approach

The paper collects, categorizes, and analyzes the published literature of both researchers and practitioners systematically.

Findings

The paper defines significant issues in operation and maintenance of wind energy related to: site and seasonal asset disturbances; stakeholders’ requirements trade‐off; dependability and asset deterioration challenges; diagnostic, prognostic and information and communication technologies (ICTs) applications; and maintenance optimization models. Within each category, the gaps and further research needs have been extracted with respect to both an academic and industrial perspective.

Practical implications

The use of wind energy is growing rapidly and the associated practices related to maintenance and asset management are still lacking. Therefore, the literature review of operation and maintenance is a necessity to uncover the holistic issues and interrelationships of what has so far been published as detailed and fragmented topics to specific issues. Wind energy assets represent modern renewable energy assets which are affected by environmental disturbances, rapid technological development, rapid scaling‐up processes, the stochastic and dynamic nature of operations and degradation, the integrity and interoperability of system‐to‐support.

Originality/value

The paper provides a comprehensive review of research contributions and industrial development efforts. That will be useful to the life cycle stakeholders in both academia and industry in understanding the maintenance problem and solution space within the wind energy context.

1 – 10 of 809