Search results

1 – 10 of 197
Article
Publication date: 3 July 2017

Andrzej Karwowski

The purpose of this paper is to examine the convergence, offered accuracy and efficiency of the bisectional adaptive frequency sampling (AFS) scheme combined with the…

Abstract

Purpose

The purpose of this paper is to examine the convergence, offered accuracy and efficiency of the bisectional adaptive frequency sampling (AFS) scheme combined with the Stöer-Bulirsch (SB) algorithm as a tool for supporting frequency-domain method-of-moments (MoM) in broadband electromagnetic (EM) simulations.

Design/methodology/approach

The AFS and SB procedures have been interfaced with the MoM code, and then, an extensive parametric study has been carried out to explore the performance of the numerical solution for the test problems of reconstructing frequency responses of the wire radiator and scatterer, respectively, over at least a decade bandwidth.

Findings

The results give evidence for the efficiency of the overall approach and its capability of constructing the approximation of multi-resonant responses with sharp resonant peaks from a substantially reduced number of EM samples (data points) compared to that of conventional uniform sampling.

Originality/value

Results of the study offer thorough insight into the performance of the AFS-SB technique, and the data given in this paper may be helpful in selecting the convergence criterion and the tolerance for the AFS-SB algorithm to achieve a possibly economical broadband simulation technique.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2017

Yang Gu, Qian Song, Ming Ma, Yanghuan Li and Zhimin Zhou

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior…

Abstract

Purpose

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior connections and unanimity, making it difficult to incorporate multiple sources of aiding information. This paper aims to propose a unanimous anchor-based trajectory calibration framework, which is expandable to encompass different types of anchor information.

Design/methodology/approach

The concept of anchors is introduced to represent different types of aiding information, which are, in essence, different constraint conditions on inertia-derived raw trajectories. The foundation of the framework is a particle filter which is implemented based on various particle weight updating strategies using diverse types of anchor information. Herein, three representative anchors are chosen to elaborate and validate the proposed framework, namely, ultra-wide-band (UWB) ranging anchors, iBeacons and the building structure-based virtual anchors.

Findings

In the simulations, with the particle reweighting strategies of the proposed framework, the positioning errors can be compensated. In the experimental test in an office building in which three anchors, including one UWB anchor, one iBeacon and one building structure-based virtual anchor are deployed; the final positioning error is decreased from 1.9 to 1.2 m; and the heading error is reduced from about 21° to 7°, respectively.

Originality/value

Herein, an anchor-based unanimous trajectory calibration framework for inertial pedestrian positioning is proposed. This framework is applicable to the schemes with different configurations of the anchors and can be expanded to adopt as much anchor information as possible.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 July 2011

Guenter Wollenberg and Sergey V. Kochetov

The paper aims to give the reader a consolidated state of art in the full‐wave modeling of passive interconnection systems using equivalent circuits and presents several…

Abstract

Purpose

The paper aims to give the reader a consolidated state of art in the full‐wave modeling of passive interconnection systems using equivalent circuits and presents several advantageous techniques developed by the authors.

Design/methodology/approach

The paper presents the theory of generalized partial element equivalent circuit (PEEC) modeling in the frequency domain (FD) and time domain (TD) developed by the authors. The widely spread simplified approaches are derived from this general formulation and the most important issues (e.g. stability in the TD) are considered. The theoretical part is completed by a simulation example, which shows the efficiency of studied methods.

Findings

Novel approaches for co‐simulation of passive interconnections in their circuit environment.

Practical implications

The PEEC method is widely used in the practice of computational electromagnetics, e.g. by the authors in the practical electromagnetic compatibility simulation.

Originality/value

The paper is based on the original work of authors carried through over many years.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1993

E.F. Chor and C.J. Peng

A compound emitter heterojunction bipolar transistor (HBT) structure that incorporates an additional heterojunction within the emitter for minority carrier confinement has been…

Abstract

A compound emitter heterojunction bipolar transistor (HBT) structure that incorporates an additional heterojunction within the emitter for minority carrier confinement has been proposed. In this new device configuration, the single wide band‐gap emitter layer in a conventional HBT is replaced by two sub‐layers of wide band‐gap material, with the sub‐layer nearer the base having a narrower band‐gap. By means of numerical simulations, the compound emitter HBT was found to perform better than comparable conventional HBTs. With the AlGaAs(n) / GaAs heterostructure system, the optimum compound emitter HBT structure was found to be Al0.3Ga0.7As(n) ‐ Al0. 2Ga0.8As(n) / GaAs with grading at the two hetero‐interfaces. It has a low turn‐on voltage that is almost identical to that of a homojunction GaAs bipolar transistor with similar doping conditions. Compared with a conventional single emitter layer Al0.3Ga0.7As/GaAs HBT, the optimum compound emitter HBT has an enhancement in the current gain by approximately 2 folds, an improvement in the uniform current gain region from 2 to 4 decades of collector current density, and a slight increase in the unity‐gain cut‐off frequency fT by about 7 %.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 12 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 11 January 2021

Masood Molimoli Hajamohideen and Sreeja Balakrishanapillai Suseela

The purpose of the study is – in Microwave filter design, the performances of passive components are deteriorated by parasitics at gigahertz (GHz) frequency range. A compact and…

Abstract

Purpose

The purpose of the study is – in Microwave filter design, the performances of passive components are deteriorated by parasitics at gigahertz (GHz) frequency range. A compact and multi-stack electromagnetic band gap (EBG) structure is proposed with improved stop band characteristics at GHz frequency range in this work. This paper proposes a new design for ultra wide band pass filter (resonator BPF) with periodically loaded one-dimensional EBG to achieve the harmonic suppression. This basic EBG structure is developed with combination of a signal strip and ground plane in the slotted section. The resonator BPF is loaded with one EBG, two EBG and three EBGs to improve the stop-band rejection.

Design/methodology/approach

The proposed filter is with multi-stack EBG cell for achieving good pass band and stop bands performance. Circuit model is analyzed in Section 2. Section 3 discuses band pass filter loaded with one EBG. In Sections 4 and 5, filter with two and three EBG loaded resonators are discussed, respectively. Section 6 is concluded with comparison of simulation and measured results.

Findings

The stop-band rejection is 20 dB, 40 dB and 50 dB, respectively, in the frequency range of 6 GHz to 20 GHz. The simulation analysis is carried out with advanced system design software. To validate the simulation results, proposed structure is fabricated, and results are found to be in good agreement.

Originality/value

This paper accounts for designing resonator BPF, which has slow wave pass band and stop band characteristics. Second and third harmonics are suppressed using multi-stack EBG. Various stacks with basic designs are proposed and improved results have been demonstrated which is open for future research.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 January 2010

A. El Aroudi, E. Alarcón, E. Rodríguez and R. Leyva

The purpose of this paper is to characterize the nonlinear dynamical behaviour of a buck‐based power‐switching amplifier controlled by fixed frequency and pulse width modulation…

Abstract

Purpose

The purpose of this paper is to characterize the nonlinear dynamical behaviour of a buck‐based power‐switching amplifier controlled by fixed frequency and pulse width modulation with a proportional‐integral compensator. The system has two forcing frequencies and one natural frequency and therefore it is characterized by three different scales of time. When the frequencies are far one from the other, quasi‐static approximation can be used. However, as the switching and the modulating frequencies become closer, this approximation is not valid and the results based on it lead to erroneous conclusions about the dynamics of the system.

Design/methodology/approach

A discrete time approach is used to reveal the interesting nonlinear phenomena that the system can exhibit. From numerical simulations using the switched model, it is shown that the system can present period‐doubling bifurcation at the fast scale (switching frequency).

Findings

An exact solution discrete‐time model is derived, able to predict accurately the nonlinear dynamical behaviour of the system.

Originality/value

The discrete time model is obtained without making quasi‐static approximation. The exact switched model is used to validate the discrete‐time model obtained. Finally, the effect of the switching frequency instabilities on the output voltage spectrum has been explored.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2022

Amir Ali Mohamad Khani, Toktam Aghaee, Jalil Mazloum and Morteza Jamali

A wide band perfect THz absorber is presented in this work. The structure includes two layers of graphene disks on the silicon dioxide dielectric layer while a golden plate is…

75

Abstract

Purpose

A wide band perfect THz absorber is presented in this work. The structure includes two layers of graphene disks on the silicon dioxide dielectric layer while a golden plate is placed at the bottom to act as a fully reflecting mirror against THz waves. According to the simulations, the device is robust enough to show independent operation versus layers thicknesses variations, chemical potentials mismatches and changing of electron relaxation time. The designed THz absorber in this work is an appropriate basic block for several applications in THz optical systems such as sensors, detectors and modulators.

Design/methodology/approach

The layers in the proposed device are modeled via passive circuit elements and consequently, the equivalent circuit of the device is calculated. Leveraging the developed equivalent circuit model (ECM) and impedance matching concept, the proposed device is designed to perfect absorption with 4.7 THz bandwidth that possesses over 90% absorption. Ample simulations are performed using MATLAB (ECM) and CST (finite element method) to verify the superior performance of the device. According to the simulations, the device is robust enough to show independent operation versus layers thicknesses variations, chemical potentials mismatches and changing of electron relaxation time.

Findings

This work reports a wideband THz absorber, composed of two graphene layers. This paper considers the circuit model representation for two different layers of the device. For a unique structure, a highly tunable response versus chemical potential is obtained. The circuit model approach and impedance matching theory are exploited to reduce computational time regarding conventional approaches.

Originality/value

A wide band absorber in THz band is presented. Leveraging circuit model approach and impedance matching theory, the design procedure is simplified regarding CPU time and memory requirements compared to conventional methods. Detailed calculations and ample simulations verify the performance excellency of the device to absorb THz incident waves in 2–6.5 THz frequencies. Also, the robustness of the device is investigated versus parameters mismatches like layers thicknesses and chemical potentials values. According to the simulations and absorption response, the proposed device is an appropriate block to be used in THz optical systems such as detectors, imaging systems and optical modulators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2010

George S. Kliros, George Kyritsis and Dimos Touzloudis

The purpose of this paper is to investigate of the ultra‐wide band (UWB) characteristics of a conical antenna covered by an electromagnetic band‐gap (EBG) structure composed of…

Abstract

Purpose

The purpose of this paper is to investigate of the ultra‐wide band (UWB) characteristics of a conical antenna covered by an electromagnetic band‐gap (EBG) structure composed of alternating high‐ and low‐permittivity dielectric spherical shells.

Design/methodology/approach

A finite difference time domain in spherical coordinates is implemented in order to characterize the antenna's performance and waveform fidelity in case an UWB pulse is used. The method of projected effective permittivity is used in order to treat accurately the dielectric interfaces between the dissimilar spherical shells.

Findings

The design achieves a very wide impedance bandwidth above 5.5 GHz and presents UWB radiation characteristics and high average gain over the whole bandwidth. The radiation patterns are monopole‐like and their frequency dependence is small in the whole UWB frequency band. A time domain study has shown that the antenna distorts the excitation pulse in a moderate way.

Originality/value

In this paper, a quasi‐planar wideband conical antenna coated on a dielectric EBG structure is proposed for what is believed to be the first time. It is mechanically stable and, relatively easy to build and integrate with the planar circuits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 January 2020

Guochang Lin, Chaonan Hu, Lin Cong and Yongtao Yao

The purpose of this paper is to developing a kind of acoustic metamaterial with wide frequency band especially in low frequency region. At the same time, its the tunability of…

Abstract

Purpose

The purpose of this paper is to developing a kind of acoustic metamaterial with wide frequency band especially in low frequency region. At the same time, its the tunability of sound insulation frequency is achieved.

Design/methodology/approach

A three-dimensional (3D) acoustic metamaterial consisting of rigid frame, spherical attachment and thin film is proposed. The material parameters and the effect of the attachment hole on the forbidden band are investigated by finite element simulation. The sound insulation effect of the structure is validated by the combination of simulation and experiment.

Findings

The results show that the elastic modulus of the structural material determines the initial frequency of the forbidden band of the proposed 3D acoustic metamaterials. The lower the elastic modulus of the structural material, the lower the initial frequency of the forbidden band. The material parameters of the frame mainly affect the initial frequency of the first forbidden band, and the material parameters of the attachment will affect both the initial and termination frequency of the first forbidden band. Holes in the attachments reduce the band gap width. The characteristic curve moves down with the increase of subtracted mass.

Research limitations/implications

The findings may greatly benefit the application of the acoustic metamaterials in the fields of sound insulation and noise reduction.

Originality/value

This acoustic metamaterial structure has excellent sound insulation performance. At the same time, the single cell structure can be assembled into any shape. The structure can achieve sound selective filtering and combination control.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 July 2011

Jernej Klemenc and Matija Fajdiga

One of the biggest problems in an R&D process is the acquisition of information about the structure dynamic loads, which are needed to reliably prove the structure's durability…

Abstract

Purpose

One of the biggest problems in an R&D process is the acquisition of information about the structure dynamic loads, which are needed to reliably prove the structure's durability. This paper aims to present an innovative method for simulating stationary Gaussian random processes, which is based on the conditional probability density function (PDF) approach.

Design/methodology/approach

The basic information on the structure dynamic loads is first obtained by short‐duration measurements on prototypes or the structure itself. These data are then used to simulate the expected structure load states during operations. A theoretical background is presented first, which is followed by the application of the method.

Findings

The results show that the spectral characteristics of the original and simulated Gaussian random processes are very similar, if the influential range of the conditional PDF is properly chosen.

Practical implications

The method can be applied for simulating random loads of structures, and excitations of dynamic systems, for example.

Originality/value

The innovative simulation approach could be helpful to engineers in the early phases of the new product development process.

1 – 10 of 197