Search results

1 – 10 of 499
Article
Publication date: 26 August 2014

Immanuvel Paul, K. Arul Prakash and S. Vengadesan

The purpose of this paper is to study the effects of Angle of Attack (AOA), Axis Ratio (AR) and Reynolds number (Re) on unsteady laminar flow over a stationary elliptic cylinder…

Abstract

Purpose

The purpose of this paper is to study the effects of Angle of Attack (AOA), Axis Ratio (AR) and Reynolds number (Re) on unsteady laminar flow over a stationary elliptic cylinder.

Design/methodology/approach

The governing equations of fluid flow over the elliptic cylinder are solved numerically on a Cartesian grid using Projection method based Immersed Boundary technique. This numerical method is validated with the results available in open literature. This scheme eliminates the requirement of generating a new computational mesh upon varying any geometrical parameter such as AR or AOA, and thus reduces the computational time and cost.

Findings

Different vortex shedding patterns behind the elliptic cylinder are identified and classified using time averaged centerline streamwise velocity profile, instantaneous vorticity contours and instantaneous streamline patterns. A parameter space graph is constructed in order to reveal the dependence of AR, AOA and Re on vortex shedding. Integral parameters of flow such as mean drag, mean lift coefficients and Strouhal number are calculated and the effect of AR, AOA and Re on them is studied using various pressure and streamline contours. Functional relationships of each of integral parameters with respect to AR, AOA and Re are proposed with minimum percentage error.

Practical implications

The results obtained can be used to explain the characteristics of flow patterns behind slender to bluff elliptical cylinders which found applications in insect flight modeling, heat exchangers and energy conservation systems. The proposed functional relationships may be very useful for the practicing engineers in those fields.

Originality/value

The results presented in this paper are important for the researchers in the area of bluff body flow. The dependence of AOA on vortex shedding and flow parameters was never reported in the literature. These results are original, new and important.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2011

Sintu Singha and K.P. Sinhamahapatra

The purpose of this paper is to simulate the flow of a conducting fluid past a circular cylinder placed centrally in a channel subjected to an imposed transverse magnetic field to…

Abstract

Purpose

The purpose of this paper is to simulate the flow of a conducting fluid past a circular cylinder placed centrally in a channel subjected to an imposed transverse magnetic field to study the effect of a magnetic field on vortex shedding at different Reynolds numbers varying from 50 to 250.

Design/methodology/approach

The two‐dimensional incompressible laminar viscous flow equations are solved using a second‐order implicit unstructured collocated grid finite volume method.

Findings

An imposed transverse magnetic field markedly reduces the unsteady lift amplitude indicating a reduction in the strength of the shed vortices. It is observed that the periodic vortex shedding at the higher Reynolds numbers can be completely suppressed if a sufficiently strong magnetic field is imposed. The required magnetic field strength to suppress shedding increases with Reynolds number. The simulation shows that the separated zone behind the cylinder in a steady flow is reduced as the magnetic field strength is increased.

Originality/value

In this paper, due attention is given to resolve and study the unsteady cylinder wake and its interaction with the shear‐layer on the channel wall in the presence of a magnetic field. A critical value of the Hartmann number for complete suppression of the shedding at a given Reynolds number is found.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1993

LISA M. LING, BALASUBRAMANIAM RAMASWAMY, RUBEN D. COHEN and TSWEN‐CHYUAN JUE

The effects of normal surface suction and blowing on the Strouhal frequencies in vortex shedding over porous square cylinders was analysed numerically. The general characteristics…

Abstract

The effects of normal surface suction and blowing on the Strouhal frequencies in vortex shedding over porous square cylinders was analysed numerically. The general characteristics determined were (1) an initial increase followed by a decreasing behaviour in the Strouhal frequency with increasing suction velocity and (2) a decrease in the Strouhal frequency with increasing blowing velocity. The numerical results were compared to an existing preliminary model, yielding fairly close agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2013

Satya Prakash Singh, Gautam Biswas and Perumal Nithiarasu

The purpose of this paper is to investigate the influence of forced, in-line oscillation of a circular cylinder on an incoming incompressible flow field at different Reynolds…

Abstract

Purpose

The purpose of this paper is to investigate the influence of forced, in-line oscillation of a circular cylinder on an incoming incompressible flow field at different Reynolds numbers.

Design/methodology/approach

A space-time finite element approach is employed to model the flow around an oscillating cylinder.

Findings

The results show that two (2S), four (2P, two pair) and three vortices (P+S, one pair and one single) are shed in each cycle. In addition, a 2P o mode is also observed, which is similar to the 2P mode but the vortices of the 2P o mode differ in strength. The 2P mode of vortex shedding is observed along the entire wake of the flow field and 2P o mode in the far wake. In some cases, the vortex street is transformed as it travels towards the exit to produce new patterns. One such pattern is observed for the first time in the present work, which is referred to as 2P o * mode. The drag and lift coefficients observed are perfectly periodic at a Reynolds number of 200 and they reach a chaotic pattern as the Reynolds number is increased to a value of 350.

Originality/value

Originality of the paper lies in the observation of 2P vortex shedding mode or its variants in the downstream of the cylinder.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2000

B.S.V. Patnaik, P.A.A. Narayana and K.N. Seetharamu

Flow past an isolated circular cylinder and two cylinders in tandem is numerically simulated, under the influence of buoyancy aiding and opposing the flow. A modified velocity…

1441

Abstract

Flow past an isolated circular cylinder and two cylinders in tandem is numerically simulated, under the influence of buoyancy aiding and opposing the flow. A modified velocity correction method is employed, which has second order accuracy in both space and time. The influence of buoyancy on the temporal fluid flow patterns is investigated, with respect to streamlines, isotherms and streaklines. Comparisons are made with respect to mean center line velocities, drag coefficients, Strouhal number and streakline patterns. Degeneration of naturally occurring Kármán vortex street into a twin eddy pattern is noticed in the Reynolds number (Re) range of 41‐200, under buoyancy aided convection. On the contrary, buoyancy opposed convection could trigger vortex shedding even at a low Re range of 20‐40, where only twin eddies are found in the natural wake. Temporal evolution of unsteady eddy patterns is visualized by means of numerical particle release (NPR). Zones of vortex shedding and twin vortices are demarcated on a plot of Richardson number against Strouhal number. Root mean square (RMS) lift coefficients (CL,RMS) and average drag coefficient (\overline Cd) are obtained as a function of Richardson number (Ri).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2021

Guangyuan Huang, Ka Him Seid, Zhigang Yang and Randolph Chi Kin Leung

For flow around elongated bluff bodies, flow separations would occur over both leading and trailing edges. Interactions between these two separations can be established through…

Abstract

Purpose

For flow around elongated bluff bodies, flow separations would occur over both leading and trailing edges. Interactions between these two separations can be established through acoustic perturbation. In this paper, the flow and the acoustic fields of a D-shaped bluff body (length-to-height ratio L/H = 3.64) are investigated at height-based Reynolds number Re = 23,000 by experimental and numerical methods. The purpose of this paper is to study the acoustic feedback in the interaction of these two separated flows.

Design/methodology/approach

The flow field is measured by particle image velocimetry, hotwire velocimetry and surface oil flow visualization. The acoustic field is modeled in two dimensions by direct aeroacoustic simulation, which solves the compressible Navier–Stokes equations. The simulation is validated against the experimental results.

Findings

Separations occur at both the leading and the trailing edges. The leading-edge separation point and the reattaching flow oscillate in accordance with the trailing-edge vortex shedding. Significant pressure waves are generated at the trailing edge by the vortex shedding rather than the leading-edge vortices. Pressure-based cross-correlation analysis is conducted to clarify the effect of the pressure waves on the leading-edge flow structures.

Practical implications

The understanding of interactions of separated flows over elongated bluff bodies helps to predict aerodynamic drag, structural vibration and noise in engineering applications, such as the aerodynamics of buildings, bridges and road vehicles.

Originality/value

This paper clarifies the influence of acoustic perturbations in the interaction of separated flows over a D-shaped bluff body. The contribution of the leading- and the trailing-edge vortex in generating acoustic perturbations is investigated as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2021

S. D. Farahani and Amir Hossein Rabiee

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square…

Abstract

Purpose)

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square cylinder that vibrates freely in the cross-flow direction is investigated.

Design/methodology/approach

To this aim, two small control rods are placed at constant angles of ± 45° relative to the horizontal axis and then the influence of diameter and spacing ratios on the oscillation and hydrodynamic response along with the vortex structure behind the cylinder is evaluated in the form of nine different cases in both VIV and galloping regions.

Findings

The performed simulations show that using the configuration presented in this study results in full VIV suppression for the spacing ratios G/D = 0.5, 1 and 1.5 at the diameter ratios d/D = 0.1, 0.2 and 0.3 (D: diameter of square cylinder, G: distance between rods and cylinder, d: diameter of rods). On the contrary, a perfect attenuation of galloping is only achieved at the largest diameter (d/D = 0.3) and the smallest spacing ratio (G/D = 0.5). In general, for both VIV and galloping regions, with increasing diameter ratio and decreasing spacing ratio, the effect of the control rods wake in the vortex street of square cylinder gradually increases. This trend carries on to the point where the vortex shedding is completely suppressed and only the symmetric wake of control rods is observed.

Originality/value

So far, the effect of rod control on VIV of a square cylinder and its amplitude of oscillations has not been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 December 2019

Aslesha Bodavula, Rajesh Yadav and Ugur Guven

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Abstract

Purpose

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Design/methodology/approach

Effect of protrusions is investigated through numerical simulation of two-dimensional Navier–Stokes equations using a finite volume solver. Turbulent stresses are resolved through the transition Shear stress transport (four-equation) turbulence model.

Findings

The small protrusion located at 0.05c and 0.1c significantly improve the lift coefficient by up to 36% in the post-stall regime. It also alleviates the leading edge stall. The larger protrusions increase the drag significantly along with significant degradation of lift characteristics in the pre-stall regime as well. The smaller protrusions also increase the frequency of the vortex shedding.

Originality/value

The effect of macroscopic protrusions or deposits in rarely investigated. The delay in stall shown by smaller protrusions can be beneficial to micro aerial vehicles. The smaller protrusions increase the frequency of the vortex shedding, and hence, can be used as a tool to enhance energy production for energy harvesters based on vortex-induced vibrations and oscillating wing philosophy.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 October 2018

Yang Zhang, Jianfeng Zou, Jiahua Xie, Xiaoyue Li, Zhenhai Ma and Yao Zheng

When a reflected shock interacts with the boundary layer in a shock tube, the shock bifurcation occurs near the walls. Although the study of the shock bifurcation has been carried…

Abstract

Purpose

When a reflected shock interacts with the boundary layer in a shock tube, the shock bifurcation occurs near the walls. Although the study of the shock bifurcation has been carried out by many researchers for several decades, little attention has been devoted to investigate the instability pattern of the bifurcation. This research work aims to successfully capture the asymmetry of the whole flow field, and attempt to achieve the instability mechanism of the shock bifurcation by a direct numerical simulation of the reflected shock wave/boundary layer interaction at Ma = 1.9. In addition, the reason for the formation of the bifurcated structure is also explored.

Design/methodology/approach

The spatial and temporal evolution of the shock bifurcation is obtained by solving the two-dimensional compressible Navier–Stokes equations using a seventh-order accurate weighted essentially non-oscillatory (WENO) scheme and a three-step Runge–Kutta time advancing approach.

Findings

The results show that the formation of shock bifurcation is mainly because of the shock/gradient field interaction, and the height of the bifurcated foot increases with the growth of the shock intensity and the gradient field. The unsteady asymmetry of the upper and bottom shock bifurcated structures is because of the vortex shedding with high frequency in the rear recirculation zone, which leads to the fluctuation of the recirculation area. The vortex shedding process behind the bifurcated structure closely resembles the Karman vortex street formed by the flow around the cylinder. The dimensionless vortex shedding frequency varies between 0.01 and 0.02. In comparison to the scenario at Ma = 1.9, the occurring time of instability is delayed and the upper and bottom bifurcated feet intersect in a relatively short time at Ma = 3.5. The region behind the bifurcated shock is a transitional flow field containing obvious cell structures and “isolated islands.”

Originality/value

This paper discovers an unsteady flow pattern of the shock bifurcation, and the mechanism of this instability in the reflected shock/boundary layer interaction is revealed in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1996

B.S.V.P. Patnaik, K.N. Seetharamu and P.A. Aswatha Narayana

A finite element method is used to study the effect of flow past acircular cylinder with an integral wake splitter. A fractional step algorithmis employed to solve the…

Abstract

A finite element method is used to study the effect of flow past a circular cylinder with an integral wake splitter. A fractional step algorithm is employed to solve the Navier‐Stokes and Energy equations with a Galerkin weighted residual formulation. The vortex shedding process is simulated and the effect of splitter addition on the time period of shedding is studied at a Reynolds number of 200 and a blockage ratio of 0.25. The effect of splitter and the Strouhal number and heat transfer augmentation per unit pressure drop has been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 499