Search results

1 – 4 of 4
Article
Publication date: 28 October 2013

Satya Prakash Singh, Gautam Biswas and Perumal Nithiarasu

The purpose of this paper is to investigate the influence of forced, in-line oscillation of a circular cylinder on an incoming incompressible flow field at different Reynolds…

Abstract

Purpose

The purpose of this paper is to investigate the influence of forced, in-line oscillation of a circular cylinder on an incoming incompressible flow field at different Reynolds numbers.

Design/methodology/approach

A space-time finite element approach is employed to model the flow around an oscillating cylinder.

Findings

The results show that two (2S), four (2P, two pair) and three vortices (P+S, one pair and one single) are shed in each cycle. In addition, a 2P o mode is also observed, which is similar to the 2P mode but the vortices of the 2P o mode differ in strength. The 2P mode of vortex shedding is observed along the entire wake of the flow field and 2P o mode in the far wake. In some cases, the vortex street is transformed as it travels towards the exit to produce new patterns. One such pattern is observed for the first time in the present work, which is referred to as 2P o * mode. The drag and lift coefficients observed are perfectly periodic at a Reynolds number of 200 and they reach a chaotic pattern as the Reynolds number is increased to a value of 350.

Originality/value

Originality of the paper lies in the observation of 2P vortex shedding mode or its variants in the downstream of the cylinder.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2022

Elena B. Martin, Francisco Sastre, Angel Velazquez and Abderrahmane Baïri

This paper aims to study the influence that the second invariant of the rate-of-strain tensor of a power law polymeric fluid (aqueous solution of hydroxyethyl cellulose [HEC]) has…

Abstract

Purpose

This paper aims to study the influence that the second invariant of the rate-of-strain tensor of a power law polymeric fluid (aqueous solution of hydroxyethyl cellulose [HEC]) has on convective mixing performance downstream of a 3D confined oscillating prism. Newtonian and non-Newtonian Reynolds numbers, the mass concentration of HEC and prism oscillation frequency were varied.

Design/methodology/approach

A conceptual problem was designed. Its objective was to analyze the convective mixing of two adjacent flow streams when they pass around a moving confined prism. The rectangular prism had a square section, and its sinusoidal motion was prescribed inside a channel with a square section too. OpenFOAM libraries were used to simulate the flow field. Regarding prism motion, the icoDyMFoam solver was used. The problem was analyzed both at the global level (mixing parameter) and local level (detailed flow topology).

Findings

For constant Reynolds number, increasing mass concentrations of HEC (in the range from 0.2% to 0.5%) led to better mixing parameters. The improvement was linked to the effect that the second invariant of the rate-of-strain tensor had on flow topology. It was found that mixing is maximum when the prism motion and its wake (the frequency of the first instability) are synchronized. In practical terms, this means that the optimum stirring frequency does not need to be very high; it suffices that it ensures that synchronization occurs. The dominant vorticity shedding pattern found was the so-called 2P mode. However, a significant difference was found when compared to the free-stream situation. While in the former, the two vorticity regions that make up the 2P pair come from the prism, in the present confined case, one came from the prism, and the other came from the wall. Another difference was that in the present case, the 2P pairs were much more elongated than in the free stream case, and this had a significant influence on the stretching and bending of streak lines and, therefore, on mixing.

Practical implications

The study that has been presented has a practical industrial implication for the processes industry because it provides guidelines to design active mixers that deal with aqueous power law polymeric solutions. In parallel, it opens up some new research lines in the direction of studying whether the mixing concept might be modified so as to develop a fully passive system that could be far simpler and, possibly, more attractive to industry.

Originality/value

The originality and value of the study are associated to the systematic approach that has been followed. It has allowed to establish a clear pattern regarding the active mixing behavior of HEC solutions in confined flows. To the best of authors’ knowledge, this could be the first study of this type in the literature. Also, the study has contributed to understand the vorticity shedding patterns that appear in these types of problems and how they shape wake topology and, consequently, mixing performance. The finding that optimum mixing requires synchronization of stirring motion frequency and wake first natural frequency of instability may help to improve the design and operation of industrial mixers dealing with polymeric aqueous solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2021

S. D. Farahani and Amir Hossein Rabiee

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square…

Abstract

Purpose)

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square cylinder that vibrates freely in the cross-flow direction is investigated.

Design/methodology/approach

To this aim, two small control rods are placed at constant angles of ± 45° relative to the horizontal axis and then the influence of diameter and spacing ratios on the oscillation and hydrodynamic response along with the vortex structure behind the cylinder is evaluated in the form of nine different cases in both VIV and galloping regions.

Findings

The performed simulations show that using the configuration presented in this study results in full VIV suppression for the spacing ratios G/D = 0.5, 1 and 1.5 at the diameter ratios d/D = 0.1, 0.2 and 0.3 (D: diameter of square cylinder, G: distance between rods and cylinder, d: diameter of rods). On the contrary, a perfect attenuation of galloping is only achieved at the largest diameter (d/D = 0.3) and the smallest spacing ratio (G/D = 0.5). In general, for both VIV and galloping regions, with increasing diameter ratio and decreasing spacing ratio, the effect of the control rods wake in the vortex street of square cylinder gradually increases. This trend carries on to the point where the vortex shedding is completely suppressed and only the symmetric wake of control rods is observed.

Originality/value

So far, the effect of rod control on VIV of a square cylinder and its amplitude of oscillations has not been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2018

Ehsan Adeeb, Basharat Ali Haider and Chang Hyun Sohn

The purpose of this study is to numerically investigate the influence of corner radius on the flow around two square cylinders in tandem arrangements at a Reynolds number of 100.

Abstract

Purpose

The purpose of this study is to numerically investigate the influence of corner radius on the flow around two square cylinders in tandem arrangements at a Reynolds number of 100.

Design/methodology/approach

Six models of square cylinders with corner radii R/D = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 (where R denotes the corner radius and D denotes the characteristic dimension of the body) were studied using an immersed boundary-lattice Boltzmann method, and the results were compared with those obtained using a two-dimensional unsteady finite volume method. The cylinders were mounted in a tandem configuration (1.5 ≤ L/D ≤ 10 where L denotes the in-line separation between the cylinder centers). The simulated models were quantitatively compared to the aerodynamic force coefficients and Strouhal number. Furthermore, qualitative analysis is presented in the form of flow streamlines and vorticity contours.

Findings

The R/D and L/D values were varied to observe the variation in the flow characteristics in the gap and wake regions. The numerical results revealed two different regimes over the spacing range. The drag force on the downstream cylinder was negative for all corner radii values when the cylinders were placed at L/D = 3.0 (a single-body system). Subsequently, a sudden increase was observed in the aerodynamic forces (drag and lift) when L/D increased. A different gap value was identified in the transformation from a single-body to a two-body system for different corner radii. To verify the single-body system, a simulation was carried out with a single cylinder having a longitudinal geometric dimension equal to the tandem arrangement (L/D + D). Furthermore, in a single-body regime, the total drag of a tandem cylinder was less than that of a single cylinder, thus demonstrating the benefits of using tandem structures. A significant reduction in the aerodynamic forces and drag force was achieved by rounding the sharp corners and placing the cylinders in close proximity. An appropriate configuration of the tandem cylinders with a rounded corner of R/D = 0.4 and 0.5 at L/D = 3.0 and the range is enhanced to L/D = 4.0 for 0.0 ≤ R/D < 0.4 to achieve adequate drag reduction.

Originality/value

To the best of the author’s knowledge, there is a paucity of studies examining the effect of corner radius on bluff bodies arranged in a tandem configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4