Search results

1 – 4 of 4
Article
Publication date: 11 October 2021

Guangyuan Huang, Ka Him Seid, Zhigang Yang and Randolph Chi Kin Leung

For flow around elongated bluff bodies, flow separations would occur over both leading and trailing edges. Interactions between these two separations can be established through…

Abstract

Purpose

For flow around elongated bluff bodies, flow separations would occur over both leading and trailing edges. Interactions between these two separations can be established through acoustic perturbation. In this paper, the flow and the acoustic fields of a D-shaped bluff body (length-to-height ratio L/H = 3.64) are investigated at height-based Reynolds number Re = 23,000 by experimental and numerical methods. The purpose of this paper is to study the acoustic feedback in the interaction of these two separated flows.

Design/methodology/approach

The flow field is measured by particle image velocimetry, hotwire velocimetry and surface oil flow visualization. The acoustic field is modeled in two dimensions by direct aeroacoustic simulation, which solves the compressible Navier–Stokes equations. The simulation is validated against the experimental results.

Findings

Separations occur at both the leading and the trailing edges. The leading-edge separation point and the reattaching flow oscillate in accordance with the trailing-edge vortex shedding. Significant pressure waves are generated at the trailing edge by the vortex shedding rather than the leading-edge vortices. Pressure-based cross-correlation analysis is conducted to clarify the effect of the pressure waves on the leading-edge flow structures.

Practical implications

The understanding of interactions of separated flows over elongated bluff bodies helps to predict aerodynamic drag, structural vibration and noise in engineering applications, such as the aerodynamics of buildings, bridges and road vehicles.

Originality/value

This paper clarifies the influence of acoustic perturbations in the interaction of separated flows over a D-shaped bluff body. The contribution of the leading- and the trailing-edge vortex in generating acoustic perturbations is investigated as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 October 2022

Subramanian Surya Narayanan and Parammasivam K.M.

The purpose of this paper is to comprehensively evaluate the progress in the development of trapped vortex combustors (TVCs) in the past three decades. The review aims to identify…

Abstract

Purpose

The purpose of this paper is to comprehensively evaluate the progress in the development of trapped vortex combustors (TVCs) in the past three decades. The review aims to identify the needs, predict the scope and discuss the challenges of numerical simulations in TVCs applied to gas turbines.

Design/methodology/approach

TVC is an emerging combustion technology for achieving low emissions in gas turbine combustors. The overall operation of such TVCs can be on very lean mixture ratio and hence it helps in achieving high combustion efficiency and low overall emission levels. This review introduces the TVC concept and the evolution of this technology in the past three decades. Various geometries that were explored in TVC research are listed and their operating principles are explained. The review then categorically arranges the progress in computational studies applied to TVCs.

Findings

Analyzing extensive literature on TVCs the review discusses results of numerical simulations of various TVC geometries. Numerical simulations that were used to optimize TVC geometry and to enhance mixing are discussed. Reactive flow studies to comprehend flame stability and emission characteristics are then listed for different TVC geometries.

Originality/value

To the best of the authors’ knowledge, this review is the first of its kind to discuss extensively the computational progress in TVC development specific to gas turbine engines. Earlier review on TVC covers a wide variety of applications including land-based gas turbines, supersonic Ramjets, incinerators and hence compromise on the depth of analysis given to gas turbine engine applications. This review also comprehensively group the numerical studies based on geometry, flow and operating conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 June 2020

Seyed Foad Mousavi, Seyed Hassan Hashemabadi and Jalil Jamali

The purpose of this study is to numerically simulate the Lamb wave propagation through a clamp-on ultrasonic gas flowmeter (UGF) in contact mode, using a new semi…

120

Abstract

Purpose

The purpose of this study is to numerically simulate the Lamb wave propagation through a clamp-on ultrasonic gas flowmeter (UGF) in contact mode, using a new semi three-dimensional approach. Moreover, experimental and analytical modeling results for transit time difference method have been used to confirm the simulation results at different gas flow velocities from 0.3 to 2.4 m/s.

Design/methodology/approach

The new semi three-dimensional approach involves the simulation of the flow field of the gas in a three-dimensional model and subsequently the simulation of wave generation, propagation and reception in a two-dimensional (2D) model. Moreover, the analytical model assumes that the wave transitions occur in a 2D mode.

Findings

The new approach is a semi three-dimensional approach used in this work, has better accuracy than a complete 2D simulation while maintaining the computing time and costs approximately constant. It is faster and less expensive than a complete 3D simulation and more accurate than a complete 2D simulation. It was concluded that the new approach could be extended to simulate all types of ultrasonic gas and non-gas flowmeters, even under harsh conditions.

Originality/value

In this work, a new approach for the numerical simulation of all types of ultrasonic flowmeters is introduced. It was used for simulation of a Lamb wave ultrasonic flow meter in contact mode.

Article
Publication date: 1 April 1955

There are three lateral dynamic attitudes, delineated by rolling, yawing, and sideslipping. It is possible to solve for the pressures on the rolling wing by quasi‐steady analysis…

Abstract

There are three lateral dynamic attitudes, delineated by rolling, yawing, and sideslipping. It is possible to solve for the pressures on the rolling wing by quasi‐steady analysis. This approach is, however, inapplicable for the yawing or sideslipping wing, and it is with the latter two cases that this paper deals.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0002-2667

1 – 4 of 4