Search results

1 – 10 of 20
Open Access
Article
Publication date: 3 December 2020

Yaxing Ren, Saqib Jamshed Rind and Lin Jiang

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause…

1965

Abstract

Purpose

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause the voltage unbalance condition and additional power loss that reduces the cycle life of battery. This paper proposes an energy management strategy for the battery/supercapacitor (SC) hybrid energy storage system (HESS) to improve the transient performance of bus voltage under unbalanced load condition in a standalone AC microgrid (MG).

Design/methodology/approach

The SC has high power density and much more cycling times than battery and thus to be controlled to absorb the transient and unbalanced active power as well as the reactive power under unbalanced condition. Under the proposed energy management design, the battery only needs to generate balanced power to balance the steady state power demand. The energy management strategy for battery/SC HESS in a standalone AC MG is validated in simulation study using PSCAD/EMTDC.

Findings

The results show that the energy management strategy of HESS maintains the bus voltage and eliminates the unbalance condition under single-phase load. In addition, with the SC to absorb the reactive power and unbalanced active power, the unnecessary power loss in battery is reduced with shown less accumulate depth of discharge and higher average efficiency.

Originality/value

With this technology, the service life of the HESS can be extended and the total cost can be reduced.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 5 February 2024

Oluwadamilola Esan, Nnamdi I. Nwulu, Love Opeyemi David and Omoseni Adepoju

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC…

Abstract

Purpose

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC) and its workforce.

Design/methodology/approach

This study used a questionnaire-based approach, and 196 participants were randomly selected. Analytical tools included standard deviation, Spearman rank correlation and regression analysis.

Findings

Before privatization, the energy sector, managed by the power holding company of Nigeria, suffered from inefficiencies in fault detection, response and billing. However, privatization improved resource utilization, replaced outdated transformers and increased operational efficiency. However, in spite of these improvements, BEDC faces challenges, including unstable voltage generation and inadequate staff welfare. This study also highlighted a lack of experience among the trained workforce in emerging electricity technologies such as the smart grid.

Research limitations/implications

This study’s focus on BEDC may limit its generalizability to other energy companies. It does not delve into energy sector privatization’s broader economic and policy implications.

Practical implications

The positive outcomes of privatization, such as improved resource utilization and infrastructure investment, emphasize the potential benefits of private ownership and management. However, voltage generation stability and staff welfare challenges call for targeted interventions. Recommendations include investing in voltage generation enhancement, smart grid infrastructure and implementing measures to enhance employee well-being through benefit plans.

Social implications

Energy sector enhancements hold positive social implications, uplifting living standards and bolstering electricity access for households and businesses.

Originality/value

This study contributes unique insights into privatization’s effects on BEDC, offering perspectives on preprivatization challenges and advancements. Practical recommendations aid BEDC and policymakers in boosting electricity distribution firms’ performance within the privatization context.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Open Access
Article
Publication date: 5 November 2021

Darko Lovrec and Vito Tič

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding…

2945

Abstract

Purpose

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding the electrical properties of the fluid used. The latter is closely related to the purpose, type, structure, and conditions of use of a hydraulic system, especially the powertrain design and fluid condition monitoring. The insulating capacity of the hydraulic fluid is important in cases where the electric motor of the pump is immersed in the fluid. In other cases, on the basis of changing the electrical conductive properties of the hydraulic fluid, we can refer its condition, and, on this basis, the degree of degradation.

Design/methodology/approach

The paper first highlights the importance of knowing the electrical properties of hydraulic fluids and then aims to compare these properties, such as the breakdown voltage of commonly used hydraulic mineral oils and newer ionic fluids suitable for use as hydraulic fluids.

Findings

Knowledge of this property is crucial for the design approach of modern hydraulic compact power packs. In the following, the emphasis is on the more advanced use of known electrical quantities, such as electrical conductivity and the dielectric constant of a liquid.

Originality/value

Based on the changes in these quantities, we have the possibility of real-time monitoring the hydraulic fluid condition, on the basis of which we judge the degree of fluid degradation and its suitability for further use.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 29 July 2020

Ghoulemallah Boukhalfa, Sebti Belkacem, Abdesselem Chikhi and Said Benaggoune

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral…

1245

Abstract

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral derivative controller (PID) in the DTC control loops of dual star induction motor (DSIM). The fuzzy controller is insensitive to parametric variations, however, with the PSO-based optimization approach we obtain a judicious choice of the gains to make the system more robust. According to Matlab simulation, the results demonstrate that the hybrid DTC of DSIM improves the speed loop response, ensures the system stability, reduces the steady state error and enhances the rising time. Moreover, with this controller, the disturbances do not affect the motor performances.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 29 December 2017

Prasenjit Dey, Aniruddha Bhattacharya and Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are…

1760

Abstract

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 28 February 2023

Mohammed Jawad Abed and Anis Mhalla

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Abstract

Purpose

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Design/methodology/approach

In this study, the associated probability is calculated based on the solar power generation capacity levels and outages conditions. Then, based on this probability, dependability indices like average energy not supplied (AENS), expected energy not supplied and loss of load expectations (LOLE) are computed, also, another indices have been computed such as (customer average interruption duration index (CAIDI), system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI)) addressing by affected customers with distribution networks reliability assessment, including PV. On the basis of their dependability indices and active power flow, several PV solar modules installed in several places are analyzed. A mechanism for assessing the performance of the grid's integration of renewable energy sources is also under investigation.

Findings

The findings of this study based on data extracted form a PV power plant connected to the power network system in Diyala, Iraq 132 kV, attempts to identify the system's weakest points in order to improve the system's overall dependability. In addition, enhanced reliability indices are given for measuring solar PV systems performance connected to the grid and reviewed for the benefit of the customers.

Originality/value

The main contributions of this study are two methods for determining the reliability of PV generators taking into consideration the system component failure rates and the power electronic component defect rates in a PV system which depend on the power input and the power loss using electrical transient analysis program (ETAP) program.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 7 September 2023

Sergey E. Zirka, Dennis Albert, Yuriy I. Moroz, Lukas Daniel Domenig and Robert Schürhuber

This paper aims to propose a method of parametrizing topological transformer model at high flux densities in the core.

Abstract

Purpose

This paper aims to propose a method of parametrizing topological transformer model at high flux densities in the core.

Design/methodology/approach

The approach proposed is based on terminal voltages and currents measured in a special purpose saturation test whose data are combined with typical saturation curves of grain-oriented electrical steels; the modeling is carried out in the ATPDraw program.

Findings

The authors corroborate experimentally the necessity of dividing the zero sequence impedance between all transformer phases and propose a method of the individual representation of the legs and yokes. This eliminates the use of nonexistent leakage inductances of primary and secondary windings.

Practical implications

The presented modeling approach can be used for predicting inrush current events and in the evaluation of the impact caused by geomagnetically induced currents (GICs).

Originality/value

The proposed approach is completely original and will contribute to a better understanding of the transients occurring in a transformer under abnormal conditions, such as inrush current events and GICs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 11 August 2022

Li Ji, Yiwei Zhang, Ruifeng Shi, Limin Jia and Xin Zhang

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation…

Abstract

Purpose

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation vehicles and service facilities with a clean electricity supply and form a new model of a source-grid-load-storage-charge synergistic highway-PV-WT integrated system (HPWIS). This paper aims to improve the flexibility index of highways and increase CO2 emission reduction of highways.

Design/methodology/approach

To maximize the integration potential, a new energy-generation, storage and information-integration station is established with a dynamic master–slave game model. The flexibility index is defined to evaluate the system ability to manage random fluctuations in power generation and load levels. Moreover, CO2 emission reduction is also quantified. Finally, the Lianhuo Expressway is taken as an example to calculate emission reduction and flexibility.

Findings

The results show that through the application of the scheduling strategy to the HPWIS, the flexibility index of the Lianhuo Expressway increased by 29.17%, promoting a corresponding decrease in CO2 emissions.

Originality/value

This paper proposed a new model to capture the evolution of the HESS, which provides highway transportation vehicles and service facilities with a clean electricity supply and achieves energy transfer aided by an energy storage system, thus forming a new model of a transportation energy system with source-grid-load-storage-charge synergy. An evaluation method is proposed to improve the air quality index through the coordination of new energy generation and environmental conditions, and dynamic configuration and dispatch are achieved with the master–slave game model.

Open Access
Book part
Publication date: 4 May 2018

Janter Napitupulu, Herman Mawengkang, Usman Ba’afai and Nasruddin M.N.

Purpose – The purpose of this study was to determine the efficacy value of national street lighting on energy conservation and carbon dioxide (CO2) emission reduction…

Abstract

Purpose – The purpose of this study was to determine the efficacy value of national street lighting on energy conservation and carbon dioxide (CO2) emission reduction.

Design/Methodology/Approach – The methods used are the measurement of electrical parameters (low voltage network), the national road illumination level with SON lamp specification, 400 W, 180 W, and 110 Lumen/W, the simulation of energy conservation calculation, and the CO2 emission reduction obtained by utilizing panel solar cells as a source of energy and LED lights for illumination.

Finding – The results show the efficacy of a 100-W light bulb at an altitude of 8 m for the following specification of light bulbs: LED, 130 Lumens/W, SON, 110 Lumen/W, and MBF, 53 Lumen/W gives the illumination level respectively 13,913 Lux, 11,773 Lux, and 5,672 Lux. By replacing the 180 W SON lamp with an LED, 100 W, of energy conservation by 3.171 GW h is obtained, which is equivalent to a CO2 emission reduction of 3.641 kTon CO2.

Originality/Value – This study is a continuation of a study of energy conservation with the utilization of solar cells as an electrical power source for an LED bulb that replaces low-voltage networks as a power source for the bulb type SON.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 31 March 2023

Yong Chen, Zhixian Zhan and Wei Zhang

As the strategy of 5G new infrastructure is deployed and advanced, 5G-R becomes the primary technical system for future mobile communication of China’s railway. V2V communication…

Abstract

Purpose

As the strategy of 5G new infrastructure is deployed and advanced, 5G-R becomes the primary technical system for future mobile communication of China’s railway. V2V communication is also an important application scenario of 5G communication systems on high-speed railways, so time synchronization between vehicles is critical for train control systems to be real-time and safe. How to improve the time synchronization performance in V2V communication is crucial to ensure the operational safety and efficiency of high-speed railways.

Design/methodology/approach

This paper proposed a time synchronization method based on model predictive control (MPC) for V2V communication. Firstly, a synchronous clock for V2V communication was modeled based on the fifth generation mobile communication-railway (5G-R) system. Secondly, an observation equation was introduced according to the phase and frequency offsets between synchronous clocks of two adjacent vehicles to construct an MPC-based space model of clock states of the adjacent vehicles. Finally, the optimal clock offset was solved through multistep prediction, rolling optimization and other control methods, and time synchronization in different V2V communication scenarios based on the 5G-R system was realized through negative feedback correction.

Findings

The results of simulation tests conducted with and without a repeater, respectively, show that the proposed method can realize time synchronization of V2V communication in both scenarios. Compared with other methods, the proposed method has faster convergence speed and higher synchronization precision regardless of whether there is a repeater or not.

Originality/value

This paper proposed an MPC-based time synchronization method for V2V communication under 5G-R. Through the construction of MPC controllers for clocks of adjacent vehicles, time synchronization was realized for V2V communication under 5G-R by using control means such as multistep prediction, rolling optimization, and feedback correction. In view of the problems of low synchronization precision and slow convergence speed caused by packet loss with existing synchronization methods, the observer equation was introduced to estimate the clock state of the adjacent vehicles in case of packet loss, which reduces the impact of clock error caused by packet loss in the synchronization process and improves the synchronization precision of V2V communication. The research results provide some theoretical references for V2V synchronous wireless communication under 5G-R technology.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 20