Search results

1 – 10 of over 5000
Article
Publication date: 2 January 2018

Mohammadreza Baghayipour, Ahmad Darabi and Ali Dastfan

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial…

Abstract

Purpose

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial flux permanent magnet (TORUS-NS AFPM) machines with surface-mounted magnets considering the winding distribution and iron saturation effects.

Design/methodology/approach

First, a procedure to calculate the winding distribution with a rectangular cross-section is proposed. The magnetic field distribution and magnetic motive force (MMF) drop due to saturation in iron cores are then exactly extracted in a 2-D analytical model. The consequent influence on air-gap magnetic field and Back EMF are also calculated using a new iterative algorithm. The results are compared with those of the conventional analytical model without saturation, 2-D finite element analysis (FEA) and an experiment on a fabricated prototype machine.

Findings

Unlike the conventional method, the new method yields the no-load magnetic field distributions in air-gap and iron cores and Back EMF very exactly such that the results well match to those of the FEA and experiment.

Originality/value

Unlike the conventional winding factor, the winding distribution is considered here along the both axial and circumferential directions, which improves the accuracy level of results for non-slotted structures with relatively large air-gaps. The magnetic field distribution and MMF drop-in iron parts are also calculated as the basis for exact recalculation of air-gap magnetic field and Back EMF. Because of small computational burden beside superior accuracy, the proposed model can be treated as an accurate and fast substitute for FEA to be used during the design procedure or for predicting the other performance characteristics of TORUS-NS AFPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 7 September 2023

Sergey E. Zirka, Dennis Albert, Yuriy I. Moroz, Lukas Daniel Domenig and Robert Schürhuber

This paper aims to propose a method of parametrizing topological transformer model at high flux densities in the core.

Abstract

Purpose

This paper aims to propose a method of parametrizing topological transformer model at high flux densities in the core.

Design/methodology/approach

The approach proposed is based on terminal voltages and currents measured in a special purpose saturation test whose data are combined with typical saturation curves of grain-oriented electrical steels; the modeling is carried out in the ATPDraw program.

Findings

The authors corroborate experimentally the necessity of dividing the zero sequence impedance between all transformer phases and propose a method of the individual representation of the legs and yokes. This eliminates the use of nonexistent leakage inductances of primary and secondary windings.

Practical implications

The presented modeling approach can be used for predicting inrush current events and in the evaluation of the impact caused by geomagnetically induced currents (GICs).

Originality/value

The proposed approach is completely original and will contribute to a better understanding of the transients occurring in a transformer under abnormal conditions, such as inrush current events and GICs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Peyman Naderi

The purpose of this paper is to obtain an integrated method for inter-turn short circuit fault detection for the cage-rotor induction machine (CRIM) considering saturation effect…

Abstract

Purpose

The purpose of this paper is to obtain an integrated method for inter-turn short circuit fault detection for the cage-rotor induction machine (CRIM) considering saturation effect.

Design/methodology/approach

The magnetic equivalent circuit (MEC) is proposed for machine modeling and nonlinear B-H curve is considered for saturation effect. The machine has some differential equations which are converted to algebraic type by trapezoidal method. On the other hand, some nonlinear equations are present due to saturation effect. A set of nonlinear algebraic equation should be solved by numerical method. Therefore, the Newton-Raphson technique is used for equation solving during of the considered time step.

Findings

Generally, the operating point of electrical machines is close to the saturation zone due to designing considerations. Moreover, some current and torque harmonics will be produced due to time and space harmonics combination, which cannot be studied when saturation modeling is neglected. Considering both space and time harmonics, a method is proposed for inter-turn short circuit fault detection based on the stator current signatures and the machine performance is analyzed in healthy and faulty cases. In order to obtain the integrated method, two sample machines (two and also four-pole machines) are modeled and finally the accuracy of the proposed method is verified through the experimental results.

Research limitations/implications

The calculations have been done in this work is limited to CRIM considering. However, the presented modeling method can be used for another types of electrical machines by some minor modifications.

Originality/value

Obtaining of an integrated formula for the inter-turn short circuit fault detection which has been presented for first time is the more advantages of present work. Moreover, in order to saturation effect considering, a new method is presented for solving of nonlinear equations which is another novelty of paper.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Jubin Jacob, Johannes J.H. Paulides and Elena Lomonova

The purpose of this paper is to study the performance and efficiency of two different permanent magnet (PM) machine rotor configurations under magnetic core saturation conditions…

Abstract

Purpose

The purpose of this paper is to study the performance and efficiency of two different permanent magnet (PM) machine rotor configurations under magnetic core saturation conditions.

Design/methodology/approach

Since the accuracy of conventional analytical methods is limited under saturation conditions, a finite element model of the machine is built; which is used to predict the various losses over its operating range such as eddy current, hysteresis, copper and magnet losses. Using this model, the efficiency map of the machine is derived which is used to investigate its efficiency corresponding to a heavy vehicle drive cycle. The performance of two different rotor designs are studied and the efficiency of each design is compared under the considered drive cycle.

Findings

It has also been proved that the performance advantage due to reluctance torque in the v-shaped interior PM (IPM) machine is offset by its core steel saturation at higher current/torque levels. The magnitude of iron losses in the IPM is higher than that in the surface PM (SPM) machine, however, the magnet loss in the SPM is higher than in the IPM.

Originality/value

An investigation of the performance of the IPM design in comparison with the SPM∼design under magnetic saturation conditions is not known to the authors. Hence, in this paper, it will be determined if the assumed performance advantage of the IPM over the SPM still holds true under these conditions.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Jernej Černelič, Robert Brezovnik, Primož Sukič and Martin Petrun

This paper aims to present two hysteresis-control algorithms designed for medium-frequency, direct-current, resistance-spot-welding (MFDC RSW) systems. The first proposed control…

Abstract

Purpose

This paper aims to present two hysteresis-control algorithms designed for medium-frequency, direct-current, resistance-spot-welding (MFDC RSW) systems. The first proposed control algorithm (MSCHC) eliminates the short switching cycles that can occur when using the existing hysteresis-control algorithms. This control minimises the number of switching cycles that are needed to generate the selected welding current. The welding-current ripple can be high when using this control algorithm. Therefore, a second algorithm (HCRR) is presented that reduces the welding-current ripple by half.

Design/methodology/approach

The proposed hysteresis controllers consist of the transformer’s magnetic-flux-density hysteresis regulator and a welding-current hysteresis regulator. Therefore, the welding current must be measured and the saturation of the iron core must be detected. The proposed hysteresis controller supplies the inverter with the signals needed to generate the supply voltage for the RSW transformer, which then generates the selected welding current.

Findings

The proposed MSCHC algorithm produces the smallest possible number of switching cycles needed to generate the selected welding current. The high welding-current ripple can be reduced if the number of switching cycles is increased. The observed number of switching cycles and the welding-current ripple change if the welding resistance and/or inductance change.

Originality/value

The number of switching cycles can be minimised when using the first proposed control algorithm (MSCHC), and so the switching power losses can be minimised. If the welding-current ripple produced by the first control algorithm is unacceptable, the second control algorithm (HCRR) can reduce it by increasing the number of switching cycles.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 October 2017

Matthew P. Watters and Michelle L. Bernhardt

This paper aims to present a new curing protocol which improves part strength and provides better repeatability for full-part infiltration by varying binder saturation levels. The…

Abstract

Purpose

This paper aims to present a new curing protocol which improves part strength and provides better repeatability for full-part infiltration by varying binder saturation levels. The fully infiltrated parts were then investigated for their resistance to water.

Design/methodology/approach

Cylinders and spheres generated using various curing procedures and binder saturation levels were subjected to uniaxial compression to determine the effects on the resulting part strength. Additionally, fully cured parts were submerged in water for varying durations to determine the resistance to water. Parts were also weighed prior to and after submersion in water to determine any change in mass.

Findings

Increased part infiltration and improved strength were achieved using a modified curing protocol with a higher oven temperature during curing. Spheres cured following the modified curing protocol resulted in a 300 per cent increase in the average force required to crush spheres. Parts were shown to have repeatable infiltration depths from 8.8 mm to 10.1 mm. Additionally, fully cured parts submerged in water for durations longer than 12 hours developed a reduction in strength.

Originality/value

This study provides key methods to improve part strength and demonstrates a limitation on maximum dimensions of parts which should be considered to behave homogeneously. Parts generated following these guidelines can be effectively used in laboratory and engineering applications where high strength and homogeneous behavior is important.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2002

Albert W.L. Yao and Y.C. Tseng

Rapid Prototyping (RP) technology is being widely used in diverse areas including mold manufacturing. However, the quality of RP parts is significantly affected by the property of…

1251

Abstract

Rapid Prototyping (RP) technology is being widely used in diverse areas including mold manufacturing. However, the quality of RP parts is significantly affected by the property of adopted material and process parameters of the rapid prototyper. The aim of this paper is to investigate the powder material and to optimize the process parameters for Zcorp 402 3DP rapid fabricator. Taguchi's method was employed to investigate the possible process parameters including binder setting saturation value (shell & core), layer thickness, and location of made‐up parts. The experimental result shows that these optimal parameters can shorten parts building time and reduce the use of powder and glue about 20 per cent for ZP100 and 10 per cent for ZP11. Additionally, the quality of RP parts is also improved dramatically. The observation of experiments also shows that the parts made by ZP11 powder is difficult to clean up because of its starch‐based property.

Details

Rapid Prototyping Journal, vol. 8 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 July 2013

Björn Riemer, Enno Lange and Kay Hameyer

Depending on the load the flux‐density distribution inside power transformers core shows significant local variations due to stray fluxes which enter the transformer core. As…

Abstract

Purpose

Depending on the load the flux‐density distribution inside power transformers core shows significant local variations due to stray fluxes which enter the transformer core. As saturation of the core has to be avoided the flux‐density distribution has to be determined early in the design stage of the transformer. This paper seeks to address these issues.

Design/methodology/approach

To determine the load dependent flux‐density distribution the operating point of the transformer is calculated considering linear and non‐linear material properties. The operating point is determined using a linearised lumped parameter model of the transformer under various load conditions. Considering non‐linear material properties the inductance matrix depends on the operating point and will be extracted by means of the FEM whenever the magnetic energy within the transformer changes notably.

Findings

This paper presents a numerical stable approach to calculate the operating point of a transformer by using the magnetic flux linkage as state variable for the coupled field problem.

Research limitations/implications

The proposed approach uses a fixed time‐step to update the lumped parameters by means of the FEM. This results in long simulation times. In further research it is planned to implement an adaptive time‐step method based on the change of the magnetic energy.

Originality/value

A numerical stable approach to calculate the operating point of a transformer by using the magnetic flux linkage as state variable for the coupled field problem is proposed. The methodology is applied to a 2D model of a three‐phase transformer. However, it also can be applied to 3D FE models. Based on the calculated operating point, the flux‐density distribution can be determined and several post‐processing methods can be executed (e.g. determination of core losses, …).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Debraj Sarkar, Debabrata Roy, Amalendu Bikash Choudhury and Sotoshi Yamada

A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against…

Abstract

Purpose

A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against electrical faults and thus ensuring an uninterrupted supply of electricity to the consumers. Previous mathematical models developed to describe the SISFCL use a simple flux density-magnetic field intensity curve representing the ferromagnetic core. As the magnetic state of the core affects the efficient working of the device, this paper aims to present a novel approach in the mathematical modeling of the device with the inclusion of hysteresis.

Design/methodology/approach

The Jiles–Atherton’s hysteresis model is utilized to develop the mathematical model of the limiter. The model is numerically solved using MATLAB. To support the validity of model, finite element model (FEM) with similar specifications was simulated.

Findings

Response of the limiter based on the developed mathematical model is in close agreement with the FEM simulations. To illustrate the effect of the hysteresis, the responses are compared by using three different hysteresis characteristics. Harmonic analysis is performed and comparison is carried out utilizing fast Fourier transform and continuous wavelet transform. It is observed that the core with narrower hysteresis characteristic not only produces a better current suppression but also creates a higher voltage drop across the DC source. It also injects more harmonics in the system under fault condition.

Originality/value

Inclusion of hysteresis in the mathematical model presents a more realistic approach in the transient analysis of the device. The paper provides an essential insight into the effect of the core hysteresis characteristic on the device performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 November 2021

Mohsen Rostami, Peyman Naderi and Abbas Shiri

The aim of this paper is to propose the model for analyzing the electromagnetic performances of permanent magnet vernier machines (PMVMs) under healthy and faulty conditions.

Abstract

Purpose

The aim of this paper is to propose the model for analyzing the electromagnetic performances of permanent magnet vernier machines (PMVMs) under healthy and faulty conditions.

Design/methodology/approach

The model uses interconnected reluctance network formed based on the geometrical approximations to predict magnetic performances of the machine. The network consists of several types of reluctances for modeling different parts of machine. Applying Kirchhoffs laws in the network and the machine windings, magnetic and electrical equations are obtained, respectively. To construct the model system of equations, the electrical equation is converted into algebraic form by using the trapezoidal technique. Moreover, the system of equations must be solved by Newton–Raphson method in each step-time because of considering the core saturation effect.

Findings

The proposed model is developed based on the modified magnetic equivalent circuit (MEC) method, in which the number of flux paths in different parts of the machine can be arbitrary selected. The saturation effect, skewed slots, the desired machine geometrical parameters and various winding arrangements are included in the proposed model; therefore, it can evaluate the time and space harmonics in modeling the PMVMs. Furthermore, a pattern for inter-turn fault detection is extracted from the stator current spectrum. Finally, 2 D-finite element method (FEM) and 3 D-FEM analysis are carried out to evaluate and verify the results of the proposed MEC model.

Originality/value

Generally, the element numbers have important role in modeling the machine and calculating its performance. Hence, the proposed MEC model’s capability to choose desired number of flux paths is advantage of this paper. Moreover, the developed MEC can be used for analyzing several electrical machines, including other types of vernier machines, with simple modification.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 5000