Search results

1 – 10 of over 8000
Article
Publication date: 9 November 2012

Alfonso Parreño Torres, Pedro Roncero‐Sánchez, Xavier del Toro García and Vicente Feliu Batlle

The protection of sensitive loads connected to power distribution grids from the existing disturbances has become an important issue in recent years. This paper aims to evaluate…

281

Abstract

Purpose

The protection of sensitive loads connected to power distribution grids from the existing disturbances has become an important issue in recent years. This paper aims to evaluate the advantages of a new control strategy, known as the generalized proportional‐integral (GPI) control, to compensate voltage sags when using dynamic voltage restorers (DVR).

Design/methodology/approach

The DVR application and the principles of the GPI control method are first introduced. In addition, a procedure to adjust the controller for the DVR application is described. Finally, the performance of the controller is extensively tested using the PSCAD/EMTDC simulation software for a variety of conditions including: balanced and imbalanced voltage sags, frequency deviations and parameter variations.

Findings

The GPI controller provides an excellent tradeoff between accuracy, response time and robustness.

Originality/value

The GPI controller is presented here as a new approach to compensate balanced and imbalanced voltage sags using a DVR. The results obtained with the proposed control system and the described methodology to adjust the control parameters make it a very suitable solution for this application. It is important to note that fast tracking and high accuracy are achieved as illustrated in the control responses. Furthermore, the analysis of the robustness against parameter variations and frequency deviations demonstrates one of the most remarkable advantages of the new control method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 March 2022

Karthick R., Ramakrishnan C. and Sridhar S.

This paper aims to introduce the quasi impedance source inverter (qZSI)-based static compensator (STATCOM), which is incorporated into the hybrid distributed power generation…

Abstract

Purpose

This paper aims to introduce the quasi impedance source inverter (qZSI)-based static compensator (STATCOM), which is incorporated into the hybrid distributed power generation system for enhancement of power quality. The distributed power generation system includes the photovoltaic (PV), wind energy conversion system (WECS) and battery energy storage system.

Design/methodology/approach

The WECS is used by the self-excited induction generator (SEIG) and the flywheel energy storage system (FESS). To regulate its terminal voltage and frequency, the SEIG requires adjustable volt-ampere reactive (VAR). A combination of a STATCOM and a fixed condenser bank usually serves to satisfy the VAR demand. The maximum correntropy criterion-based adaptive filter technique (AFT) is proposed to control the qZSI-STATCOM and to guarantee that the voltage at the SEIG terminal is harmonic-free while providing non-linear three-phase and single-phase loads.

Findings

The coordinated operation of the suggested voltage control and flywheel control systems ensures that load voltage and frequency are retained in their respective values at very low harmonic distortions regardless of wind speed and load variation. The simulation and experimental studies are carried out under different load conditions to validate the efficiencies of the PV-assisted STATCOM.

Originality/value

To improve system stability and minimize total costs, extra load current sensors can also be avoided. This paper proposes to control the SEIG terminal voltage and harmonic elimination in the standalone WECS systems using maximum correntropy criterion-based AFT with a fuzzy logic controller.

Article
Publication date: 10 September 2018

Yuvaraja T. and K. Ramya

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering…

Abstract

Purpose

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering optimisation of a hybrid energy storage system (HESS) was projected in this paper.

Design/methodology/approach

The projected control stratagem was divided into three levels: topmost power dispatch level, transitional bus voltage regulation level and bottommost converter control level.

Findings

At the topmost power dispatch level, the cost of system stability was introduced, which is related with state of charge and discharging power of HESS.

Originality/value

Furthermore, the cost of system stability and HESS depreciation was compared with commercial price, and HESS switches its operating mode to discharge more at higher price or charge more at lower price to ensure the DC microgrid in economic operation. At the transitional bus voltage regulation level, DC bus gesturing is used as a control signal to achieve an autonomous decentralised operation of DC microgrid. The Matlab/Simulink simulation inveterate that the economical and autonomous decentralised operation can be achieved through the control stratagem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2015

Jian-Xin Shen, Dong-Min Miao and Mengjia Jin

The purpose of this paper is to focus on various control strategies for permanent magnet synchronous generator (PMSG) systems, in order to stabilize the dc link output voltage

Abstract

Purpose

The purpose of this paper is to focus on various control strategies for permanent magnet synchronous generator (PMSG) systems, in order to stabilize the dc link output voltage over a wide operation speed range.

Design/methodology/approach

Two control methods, namely, the flux regulation control (FRC) which adjusts the stator flux linkage and then indirectly stabilize the dc link voltage, and the direct voltage control (DVC) which directly stabilize the dc link voltage by regulating the power angle, are proposed in this paper. Both methods can be realized by either approach of the conventional space vector pulse width modulation (SVPWM) or the proposed single voltage vector modulation (SVVM).

Findings

The FRC can optimize the field in the PMSG, however, the realization is complicated. The DVC need not estimate and regulate the stator flux linkage, hence is easy to implement. On the other hand, the SVPWM can provide smooth armature current and dc link voltage, while the SVVM applies only one voltage vector during each control cycle, hence, is simple to realize and requires the minimum switching on the PWM rectifier. All cross-combinations between the two control methods and the two realization approaches work well.

Originality/value

The proposed FRC and DVC methods are simpler than the conventional field oriented control, while the proposed SVVM is a novel and efficient approach to generate the PWM status. Optimal cross-combination, either of SVPWM-FRC, SVVM-FRC, SVPWM-DVC and SVVM-DVC, can be chosen to satisfy the system characters and requirements.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 January 2024

Dangshu Wang, Menghu Chang, Licong Zhao, Yuxuan Yang and Zhimin Guan

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board…

Abstract

Purpose

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board chargers, there are issues with wide frequency adjustment ranges and low conversion efficiency.

Design/methodology/approach

To address these issues, this paper proposes a fixed-frequency pulse width modulation (PWM) control strategy for a full-bridge LLC resonant converter, which adjusts the gain by adjusting the duty cycle of the switches. In the full-bridge LLC converter, the two switches of the lower bridge arm are controlled by a fixed-frequency and fixed duty cycle, with their switching frequency equal to the resonant frequency, whereas the two switches of the upper bridge arm are controlled by a fixed-frequency PWM to adjust the output voltage. The operation modes of the converter are analyzed in detail, and a mathematical model of the converter is established. The gain characteristics of the converter under the fixed-frequency PWM control strategy are deeply analyzed, and the conditions for implementing zero-voltage switching (ZVS) soft switching in the converter are also analyzed in detail. The use of fixed-frequency PWM control simplifies the design of resonant parameters, and the fixed-frequency control is conducive to the design of magnetic components.

Findings

According to the fixed-frequency PWM control strategy proposed in this paper, the correctness of the control strategy is verified through simulation and the development and testing of a 500-W experimental prototype. Test results show that the primary side switches of the converter achieve ZVS and the secondary side rectifier diodes achieve zero-current switching, effectively reducing the switching losses of the converter. In addition, the control strategy reduces the reactive circulating current of the converter, and the peak efficiency of the experimental prototype can reach 95.2%.

Originality/value

The feasibility of the fixed-frequency PWM control strategy was verified through experiments, which has significant implications for improving the efficiency of the converter and simplifying the design of resonant parameters and magnetic components in wide output voltage fields such as on-board chargers.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 March 2018

Mohammad Maalandish, Seyed Hossein Hosseini, Mehran Sabahi and Pouyan Asgharian

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with…

Abstract

Purpose

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with the same outputs and a symmetric multi-level inverter.

Design/methodology/approach

The proposed structure, a two-stage DC–AC symmetric multi-level inverter with modified Model Predictive Control (MMPC) method, is presented for Photovoltaic (PV) applications. The voltage of DC-link capacitors of the boost converter is controlled by MMPC control method to select appropriate switching vectors for the multi-level inverter. The proposed structure is provided for single-phase power system, which increases 65 V input voltage to 220 V/50 Hz output voltage, with 400 V DC link. Simulation results of proposed structure with MMPC method are carried out by PSCAD/EMTDC software.

Findings

Based on the proposed structure and control method, total harmonic distortion (THD) reduces, which leads to lower power losses and higher circuit reliability. In addition, reducing the number of active switches in current path causes to lower voltage stress on the switches, lower PV leakage current and higher overall efficiency.

Originality/value

In the proposed structure, a new control method is presented that can make a symmetric five-level voltage with lower THD by selecting proper switching for PV applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades…

8482

Abstract

Purpose

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades power‐electronic technology has experienced a dramatic evolution. This second part of the paper aims to focus on a comprehensive survey of power converters and their associated control systems for high‐power wind energy generation applications.

Design/methodology/approach

Advanced control strategies, i.e. field‐oriented vector control and direct power control, are initially reviewed for wind‐turbine driven doubly fed induction generator (DFIG) systems. Various topologies of power converters, comprising back‐to‐back (BTB) connected two‐ and multi‐level voltage source converters (VSCs), BTB current source converters (CSCs) and matrix converters, are identified for high‐power wind‐turbine driven PMSG systems, with their respective features and challenges outlined. Finally, several control issues, viz., basic control targets, active damping control and sensorless control schemes, are elaborated for the machine‐ and grid‐side converters of PMSG wind generation systems.

Findings

For high‐power PMSG‐based wind turbines ranging from 3 MW to 5 MW, parallel‐connected 2‐level LV BTB VSCs are the most cost‐effective converter topology with mature commercial products, particularly for dual 3‐phase stator‐winding PMSG generation systems. For higher‐capacity wind‐turbine driven PMSGs rated from 5 MW to 10 MW, medium voltage multi‐level converters, such as 5‐level regenerative CHB, 3‐ and 4‐level FC BTB VSC, and 3‐level BTB VSC, are preferred. Among them, 3‐level BTB NPC topology is the favorite with well‐proven technology and industrial applications, which can also be extensively applicable with open‐end winding and dual stator‐winding PMSGs so as to create even higher voltage/power wind generation systems. Sensorless control algorithms based on fundamental voltages/currents are suggested to be employed in the basic VC/DPC schemes for enhancing the robustness in the entire PMSG‐based wind power generation system, due to that the problems related with electromagnetic interferences in the position signals and the failures in the mechanical encoders can be avoided.

Originality/value

This second part of the paper for the first time systematically reviews the latest state of arts with regard to power converters and their associated advanced control strategies for high‐power wind energy generation applications. It summarizes a variety of converter topologies with pros and cons highlighted for different power ratings of wind turbines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Thomas Vyncke, Steven Thielemans, Michiel Jacxsens and Jan Melkebeek

Flying‐capacitor multilevel converters (FCC) need a passive or active regulation of the capacitor voltages. Recently the trend is towards active control, often implemented…

Abstract

Purpose

Flying‐capacitor multilevel converters (FCC) need a passive or active regulation of the capacitor voltages. Recently the trend is towards active control, often implemented separately from the current control. The advantages of a true multi‐variable control sparked the interest to apply Model Based Predictive Control (MBPC) for FCC. In this paper an objective analysis method to evaluate the effects of several design choices is presented. The effects of the weight factor selection, model simplification, and prediction horizon expansion for MBPC of a 3‐level FCC are analyzed in a systematical way.

Design/methodology/approach

The analysis is mainly based on the mean square error (MSE) of current and capacitor voltage. The results are analysed for different lengths of the prediction horizon and for a wide range of weight factor values. Similarly the effect of a model simplification, neglecting the neutral point voltage, is studied when implementing MBPC for FCCs while considering the computational aspects. Validation of the simulation results is done by experiments on an FPGA‐based setup.

Findings

Including the effect of the neutral point voltage considerably increases the current control quality and a much wider range of good values for the weight factor exists. As this good range is not critically dependent on the current amplitude it is possible to select one weight factor value for all operating points. Furthermore, it is concluded that increasing the prediction horizon increases the computational load without improving the control quality.

Research limitations/implications

The effects of increasing the prediction horizon when including other controlled variables is to be investigated, as well as the robustness to modeling errors. The MSE analysis methodology is very suitable for this further research.

Practical implications

For practitioners of MBPC in power electronics the paper proves that by means of simulations and the MSE one value for weight factor can be chosen for all operating points. The paper clearly shows that a practical implementation is feasible and demonstrates that neglecting the neutral point voltage is not good practice.

Originality/value

The MSE‐based analysis is shown to be a systematical and unbiased methodology to evaluate the effects of design choices. The results from this analysis can be directly applied in practical setups.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2006

İres İskender, Yıldırım Üçtuğ and H.Bülent Ertan

To analyze the operating performance of an ac‐dc‐ac‐dc PWM parallel resonant converter operating at lagging power factor mode controlled based on fuzzy logic control method.

1339

Abstract

Purpose

To analyze the operating performance of an ac‐dc‐ac‐dc PWM parallel resonant converter operating at lagging power factor mode controlled based on fuzzy logic control method.

Design/methodology/approach

A range of published works relevant to dc‐ac‐dc converters and their control methods based on PWM technique are evaluated and their limitations in converter output voltage control are indicated in the first section of this paper. The Simulink model and different stages of the converter are described in the second section. In Section 3, the general mathematical model of the system is derived and the phase‐shift PWM switching technique is explained. The equivalent circuit of the high‐voltage high‐frequency transformer used in the converter and the effects of the transformer parameters on the converter operation are presented in Section 4. In Section 5, fuzzy logic control and the basic concepts of this method are described and its application to the proposed converter output voltage control is explained. In Section 6, the Simulink simulation results of the fuzzy logic control application are given for different operating conditions. In Section 7, an overview of the hardware used in this study is presented and the experimental results are given to show the performance of the controller. Finally, Section 8 gives the conclusions of the study.

Findings

The fuzzy logic control which is a suitable method for nonlinear systems such as the converter proposed in this paper, is successfully applied for output voltage control of the converter. The controller performance is satisfied. The phase‐shift angle of the converter is used as the control parameter. The paper also presents how the parasitic parameters of the transformer used in high‐voltage applications can be used as the circuit resonant elements.

Research limitations/implications

In preparing this paper, the resources books and periodic journals existing in our university library and also the English resources relative to dc‐ac‐dc converters reachable through the internet were researched.

Practical implications

The suggested control method can be used in the control of linear and nonlinear systems. The study carried out in this paper is also a very good approach to be used in high‐voltage high‐frequency converters output voltage control.

Originality/value

Since, the control approach proposed in this paper does not require the information on converter and transformer parameters that affect the converter output voltage, so it can effectively be used in applications where there are parameter variation problems. The design of the transformer for the required load, finding an optimum operating frequency for the converter, and using the transformer parameters as resonant elements of the circuit to decrease the switching losses are the other contributions of this paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1937

B. Sykes

IN this article it is proposed to deal with the broad principles of operation of the various systems of control of aircraft electrical generators which are in common use, rather…

Abstract

IN this article it is proposed to deal with the broad principles of operation of the various systems of control of aircraft electrical generators which are in common use, rather than with the detail design features and the many minor variations adopted by different manufacturers of this type of equipment.

Details

Aircraft Engineering and Aerospace Technology, vol. 9 no. 2
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 8000