Search results

1 – 10 of 124
Article
Publication date: 9 November 2012

Alfonso Parreño Torres, Pedro Roncero‐Sánchez, Xavier del Toro García and Vicente Feliu Batlle

The protection of sensitive loads connected to power distribution grids from the existing disturbances has become an important issue in recent years. This paper aims to evaluate…

281

Abstract

Purpose

The protection of sensitive loads connected to power distribution grids from the existing disturbances has become an important issue in recent years. This paper aims to evaluate the advantages of a new control strategy, known as the generalized proportional‐integral (GPI) control, to compensate voltage sags when using dynamic voltage restorers (DVR).

Design/methodology/approach

The DVR application and the principles of the GPI control method are first introduced. In addition, a procedure to adjust the controller for the DVR application is described. Finally, the performance of the controller is extensively tested using the PSCAD/EMTDC simulation software for a variety of conditions including: balanced and imbalanced voltage sags, frequency deviations and parameter variations.

Findings

The GPI controller provides an excellent tradeoff between accuracy, response time and robustness.

Originality/value

The GPI controller is presented here as a new approach to compensate balanced and imbalanced voltage sags using a DVR. The results obtained with the proposed control system and the described methodology to adjust the control parameters make it a very suitable solution for this application. It is important to note that fast tracking and high accuracy are achieved as illustrated in the control responses. Furthermore, the analysis of the robustness against parameter variations and frequency deviations demonstrates one of the most remarkable advantages of the new control method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2004

Francisco Jurado and José Ramón Saenz

This paper presents method to discriminate between transient voltage stability and voltage sag. The discrete wavelet transform (WT) is a powerful tool in the analysis of the…

Abstract

This paper presents method to discriminate between transient voltage stability and voltage sag. The discrete wavelet transform (WT) is a powerful tool in the analysis of the transient phenomena in power systems because of its ability to extract information in both the time and frequency domain. This paper introduces a technique for accurate discrimination by combining WTs with neural networks (NNs). The WT is first applied to decompose the signals into a series of detailed wavelet components. The wavelet components are calculated and then employed to train a NN. The simulated results presented clearly show that the proposed technique can accurately discriminate between transient voltage stability and voltage sag in power system protection.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 November 2018

Sophi Shilpa Gururajapathy, Hazlie Mokhlis and Hazlee Azil Illias

The purpose of this paper is to identify faults in distribution systems which are unavoidable because of adverse weather conditions and unexpected accidents. Hence, quick fault…

Abstract

Purpose

The purpose of this paper is to identify faults in distribution systems which are unavoidable because of adverse weather conditions and unexpected accidents. Hence, quick fault location is vital for continuous power supply. However, most fault location methods depend on the stored database for locating fault. The database is created by simulation, which is time consuming. Therefore, in this work, a comprehensive fault location method to detect faulty section and fault distance from one-ended bus using limited simulated data is proposed.

Design/methodology/approach

The work uses voltage sag data measured at a primary substation. Support vector machine estimates the data which are not simulated. The possible faulty section is determined using matching approach and fault distance using mathematical analysis.

Findings

This work proposed a ranking analysis for multiple possible faulty sections, and the fault distance is calculated using Euclidean distance approach.

Practical implications

The research work uses Malaysian distribution system as it represents a practical distribution system with multiple branches and limited measurement at primary substation. The work requires only metering devices to identify fault which is cost effective. In addition, the distribution system is simulated using real-time PSCAD by which the capability of proposed method can be fully tested.

Originality/value

The paper presents a new method for fault analysis. It reduces simulation time and storage space of database. The work identifies faulty section and ranks the prior faulty section. It also identifies fault distance using a mathematical approach.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1989

Bennett J. Price

Computers need clean, reliable, electrical power. The various faults of electrical power, such as spikes, sags, outages, noise, frequency variations, and static electricity, are…

Abstract

Computers need clean, reliable, electrical power. The various faults of electrical power, such as spikes, sags, outages, noise, frequency variations, and static electricity, are defined and described. Preventive measures that computer users can employ to reduce the potential of electrical problems are discussed, as are the processes for detecting, diagnosing, and curing electrical problems when they do occur. Sidebars consider: transformers; power distribution units (PDUs); surge currents/ linear and non‐linear loads; and sizing the power conditioning system. The next issue will conclude this series with an article on uninterruptible power supplies and a bibliography.

Details

Library Hi Tech, vol. 7 no. 1
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 30 June 2020

Byomakesh Dash, Renu Sharma and Bidyadhar Subudhi

A cascaded observer-based transfer delay frequency locked loop (CODFLL) algorithm is developed to control the distribution static compensator (DSTATCOM) to address various power…

Abstract

Purpose

A cascaded observer-based transfer delay frequency locked loop (CODFLL) algorithm is developed to control the distribution static compensator (DSTATCOM) to address various power quality (PQ) issues arise because of distorted grid and load conditions. Moreover, frequency locked loop is included along with the observer to take care of the frequency drift from nominal value and to improve its performance during steady state and transient conditions. During daylight, the proposed system works as photovoltaic (PV) DSTATCOM and performs multiple functions for improving PQ whilst transferring power to grid and load. The system under consideration acts as DSTATCOM during night and bad weather condition to nullify the PQ issues.

Design/methodology/approach

CODFLL control algorithm generates reference signal for hysteresis controller. This reference signal is compared with an actual grid signal and a gate pulse is produced for a voltage source converter. The system is made frequency adaptive by transfer delay adaptive frequency locked loop (FLL). Peak power is extracted from a PV source using the perturb and observe technique irrespective of disturbances encountered in the system.

Findings

The PV system’s performance with the proposed controller is studied and compared with conventional control algorithms such as least mean fourth (LMF), improved second-order generalized integrator frequency locked loop (ISOGI-FLL), synchronous reference frame phased lock loop (SRF-PLL) and frequency adaptive disturbance observer (DOB) for different cases, for example, steady-state condition, dynamic condition, variable insolation, voltage sag and swell and frequency wandering in the supply side. It is found that the proposed method tracks the frequency variation faster as compared to ISOGI-FLL without any oscillations. During unbalanced loading conditions, CODFLL exhibits zero oscillations. Harmonics in system parameters are reduced to the level of IEEE standard; unity power factor is maintained at the grid side; hassle-free power flow takes place from the source to the grid and load; and consistent voltage profile is maintained at the coupling point.

Originality/value

CODFLL control algorithm is developed for PV-DSTATCOM systems to generate a reference grid current.

Article
Publication date: 10 September 2018

Yuvaraja T. and K. Ramya

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering…

Abstract

Purpose

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering optimisation of a hybrid energy storage system (HESS) was projected in this paper.

Design/methodology/approach

The projected control stratagem was divided into three levels: topmost power dispatch level, transitional bus voltage regulation level and bottommost converter control level.

Findings

At the topmost power dispatch level, the cost of system stability was introduced, which is related with state of charge and discharging power of HESS.

Originality/value

Furthermore, the cost of system stability and HESS depreciation was compared with commercial price, and HESS switches its operating mode to discharge more at higher price or charge more at lower price to ensure the DC microgrid in economic operation. At the transitional bus voltage regulation level, DC bus gesturing is used as a control signal to achieve an autonomous decentralised operation of DC microgrid. The Matlab/Simulink simulation inveterate that the economical and autonomous decentralised operation can be achieved through the control stratagem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1990

Francois Martzloff

Provides a definition of the many different forms of powertransient as well as explaining their causes and suggesting remedies foreach type of transient which can be taken to…

Abstract

Provides a definition of the many different forms of power transient as well as explaining their causes and suggesting remedies for each type of transient which can be taken to avoid damage to computer systems. Lists possible unexpected problems and the side effects to be expected if protection is incorrectly installed.

Details

OCLC Micro, vol. 6 no. 4
Type: Research Article
ISSN: 8756-5196

Keywords

Article
Publication date: 3 June 2021

Nipan Kumar Das Das and Mrinal Buragohain

The power framework has become a vital part in the day-to-day life and exhibits a rapid development in this current era. Due to the fact of huge power utilization, the power…

Abstract

Purpose

The power framework has become a vital part in the day-to-day life and exhibits a rapid development in this current era. Due to the fact of huge power utilization, the power frameworks fall under several power transmission-related concerns. Precisely, frequency deviation has generated a huge impact during power transmission; this in turn highly reduces the power system stability as well as reliability too.

Design/methodology/approach

To boost the system’s efficacy, this study proposes a neoteric closed loop feedback controller in which a control algorithm named correlative-elemental-curvature algorithm is introduced with a constant threshold.

Findings

With the aim of mitigating frequency deviation, a stability analysis technique called Retrofit Lyapunov’s method is deployed in the controller. This would simultaneously reduce the load disturbances along with tie-line synchronization issues faced with the prior controllers. Optimization is carried out with the aid of duelist optimization algorithm, which tunes the controller parameters thereby mitigating the complexities while designing a loop feedback controller power framework.

Originality/value

The efficacy of the proposed work is assessed with the aid of metrics, such as integral absolute error, accuracy and settling time. Thus, the proposed work enhances the system reliability as well as the stability by mitigating the frequency deviation related issues and guarantees reliable power transmission.

Article
Publication date: 21 August 2019

Yuvaraja T. and K. Ramya

The purpose of this paper is to analyze the Luo super boost converter coupled fragmented source inversion system (LC-FSIS) and the progress of a controller structure for energy…

Abstract

Purpose

The purpose of this paper is to analyze the Luo super boost converter coupled fragmented source inversion system (LC-FSIS) and the progress of a controller structure for energy stored. The inversion system is characterized by a diode arm structure and can be easily amassed into a conversion system for high/medium- power conversion systems.

Design/methodology/approach

The investigation is based on the practice of a simplified circuit established as common anode/common cathode, where all the diodes in each arm are connected to a renewable DC voltage source. In this proposed work, a novel fuzzy digital logic switching technique (FDLST) for three-phase fragmented source inversion (FSI) for enhancement in power excellence is measured to enterprise the novel fuzzy digital logic switching technique to authorize operative voltage utilization and enhanced harmonic spectrum.

Findings

Sequential circuit design using flip-flops is used in the analysis of fuzzy digital logic switching technique.

Originality/value

The three-phase fragmented source configuration is designed using a split DC source which is obtained from the Opto-electric source and is implemented using MOSFET. The procedure of novel FDLST reduces the Statistical Harmonic Reduction (SHR). Simulation and results are carried out to prove the dominance of designed FDLST.

Article
Publication date: 29 July 2022

Saravanan N. and Hosimin Thilagar S.

The purpose of this paper rapid development of various voltage sag compensation techniques in DC bus using ultra-capacitors (UCs) provides satisfactory results when compared with…

28

Abstract

Purpose

The purpose of this paper rapid development of various voltage sag compensation techniques in DC bus using ultra-capacitors (UCs) provides satisfactory results when compared with required peak power demand for shorter duration. Later, UCs have been used as floating capacitors [1] [2]. Various UCs are available based on internal resistances which also rely on its manufacturing materials, similar to double layer capacitors.

Design/methodology/approach

This paper demonstrates UCs based voltage sag compensation at load side under different working modes of hydraulic pack (HP) in an armored fighting vehicle (AFV). The main sources to supply the HP are 24 V, 400 Ahr battery bank and 20 kW main generator. HP is considered to be the highest power load of a system. 2,500 A inrush current was drawn by HP during initial conditions, and also, this system works in both elevation and azimuth mode. Voltage sag has been varied from 15 to 24 V for different modes. But as per the military standard, electrical systems should operate between 18 and 32 V DC. Because of insufficient terminal voltage, required energy cannot be attained and supplied to the loads. The proposed topology compensated the voltage sag and maintains nominal voltage on a DC bus. The devised circuit has been verified under all possible operating loads such as continuous, intermittent and momentary. The same has been simulated using MATLAB/Simulink and was experimentally verified. The minimum voltage maintained in a DC bus is 22.2 V in simulation, while experimentally, it was 24.2 V.

Findings

For getting higher percentage of efficiency, secondary energy system configuration, mainly designed for electrical vehicles, is needed. It was implemented and same was tested with the fighting vehicle system[1]. The proposed configuration comprises of bank of an UC and a battery bank. The system was finally implemented in AFVs.

Originality/value

The goods vehicles made of UCs can hold very minimum energy because of minimum density of energy. The modified AFV can have minimum charging as well as discharging of rate of energy and, thus, power[3][4]. Thus, the proposed idea of modified vehicle system has influence over significant change in the state of charge.

Details

Circuit World, vol. 49 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 124