Search results

1 – 10 of over 2000
Article
Publication date: 1 October 2018

Boyang Qu, Peng Zhang, Jianmin Luo, Shie Yang and Yongsheng Chen

The purpose of this paper is to investigate a light-trapping structure based on Ag nanograting for amorphous silicon (a-Si) thin-film solar cell. Silver nanopillar arrays on…

Abstract

Purpose

The purpose of this paper is to investigate a light-trapping structure based on Ag nanograting for amorphous silicon (a-Si) thin-film solar cell. Silver nanopillar arrays on indium tin oxide layer of the a-Si thin-film solar cells were designed.

Design/methodology/approach

The effects of the geometrical parameters such as nanopillar radius (R) and array period (P) were investigated by using the finite element simulation.

Findings

The optimization results show that the absorption of the solar cell with Ag nanopillar structure and anti-reflection film is enhanced up to 29.5 per cent under AM1.5 illumination in the 300- to 800-nm wavelength range compared with the reference cell. Furthermore, physical mechanisms of absorption enhancement at different wavelength range are discussed according to the electrical field amplitude distributions in the solar cells.

Research limitations/implications

The research is still in progress. Further studies mainly focus on the performance of solar cells with different nanograting materials.

Practical implications

This study provides a feasible method for light-trapping structure based on Ag nanograting for a-Si thin-film solar cell.

Originality/value

This study is promising for the design of a-Si thin-film solar cells with enhanced performance.

Details

Microelectronics International, vol. 35 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 June 2019

Barbara Swatowska, Piotr Panek, Dagmara Michoń and Aleksandra Drygała

The purpose of this study was the comparison and analysis of the electrical parameters of two kinds of silicon solar cells (mono- and multicrystalline) of different emitter…

Abstract

Purpose

The purpose of this study was the comparison and analysis of the electrical parameters of two kinds of silicon solar cells (mono- and multicrystalline) of different emitter resistance.

Design/methodology/approach

By controlling of diffusion parameters, silicon mono- (Cz-Si) and multicrystalline (mc-Si) solar cells with different emitter resistance values were produced – 22 and 48 Ω/□. On the basis of current-voltage measurements of cells and contact resistance mapping, the properties of final solar cells based on two different materials were compared. Additionally, the influence of temperature on PV cells efficiency and open circuit voltage (Uoc) were investigated. The PC1D simulation was useful to determine spectral dependence of external quantum efficiency of solar cells with different emitter resistance. The silicon solar cells of 25 cm2 area and 240 µm thickness were investigated.

Findings

Considering the all stages of cell technology, the best structure is silicon solar cell with sheet resistance (Rsheet) of 45-48 Ω/□. Producing of an emitter with this resistance allowed to obtain cells with a fill factor between 0.725 and 0.758, Uoc between 585 and 612 mV, short circuit current (Isc) between 724 and 820 mA.

Originality/value

Measurements and analysis confirmed that mono- and multicrystalline silicon solar cells with 48 Ω/□ emitter resistance have better parameters than cells with Rsheet of 22 Ω/□. The contact resistance is the highest for mc-Si with Rsheet of 48 Ω/□ and reaches the value 3.8 Ωcm.

Details

Microelectronics International, vol. 36 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 April 2023

Mozhgan Hosseinnezhad and Zahra Ranjbar

The purpose of this paper is to introduce flexible dye-sensitized solar cells (FDSSCs).

Abstract

Purpose

The purpose of this paper is to introduce flexible dye-sensitized solar cells (FDSSCs).

Design/methodology/approach

In the third generation solar cells, glass was used as a substrate, which due to its high weight and fragility, was not possible to produce continuously. However, in flexible solar cells, flexible substrates are used as new technology. The most important thing may choose a suitable substrate to produce a photovoltaic (PV) device with optimal efficiency.

Findings

Conductive plastics or metallic foils are the two main candidates for glass replacement, each with its advantages and disadvantages. As some high-temperature methods are used to prepare solar cells, metal substrates can be used to prepare PV devices without any problems. In contrast to the advantage of high thermal resistance in metals, metal substrates are dark and do not transmit enough light. In other words, metal substrates have a high loss of photon energy. Like all technologies, PV devices with polymer substrates have technical disadvantages.

Practical implications

In this study, the development of FDSSCs offers improved photovoltaic properties.

Social implications

The most important challenge is the poor thermal stability of polymers compared to glass and metal, which requires special methods to prepare polymer solar cells. The second important point is choosing the suitable components and materials for this purpose.

Originality/value

Dependence of efficiency and performance of the device on the angle of sunlight, high-cost preparation devices components, limitations of functional materials such as organic-mineral sensitizers, lack of close connection between practical achievements and theoretical results and complicated fabrication process and high weight.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2560

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 July 2014

Mark Blome, Kevin McPeak, Sven Burger, Frank Schmidt and David Norris

The purpose of this paper is to find an optimized thin-film amorphous silicon solar cell design by numerically optimizing the light trapping efficiency of a pyramid-structured…

Abstract

Purpose

The purpose of this paper is to find an optimized thin-film amorphous silicon solar cell design by numerically optimizing the light trapping efficiency of a pyramid-structured back-reflector using a frequency-domain finite element Maxwell solver. For this purpose short circuit current densities and absorption spectra within the investigated solar cell model are systematically analyzed. Furthermore, the authors employ a topology simulation method to accurately predict the material layer interfaces within the investigated solar cell model. The method simulates the chemical vapor deposition (CVD) process that is typically used to fabricate thin-film solar cells by combining a ballistic transport and reaction model (BTRM) with a level-set method in an iterative approach. Predicted solar cell models are far more realistic compared to solar cell models created assuming conformal material growth. The purpose of the topology simulation method is to increase the accuracy of thin-film solar cell models in order to facilitate highly accurate simulation results in solar cell design optimizations.

Design/methodology/approach

The authors perform numeric optimizations using a frequency domain finite element Maxwell solver. Topology simulations are carried out using a BTRM combined with a level-set method in an iterative fashion.

Findings

The simulation results reveal that the employed pyramid structured back-reflectors effectively increase the light path in the absorber mainly by exciting photonic waveguide modes. In using the optimization approach, the authors have identified solar cell models with cell periodicities around 480 nm and pyramid base widths around 450 nm to yield the highest short circuit current densities. Compared to equivalent solar cell models with flat back-reflectors, computed short circuit current densities are significantly increased. Furthermore, the paper finds that the solar cell models computed using the topology simulation approach represent a far more realistic approximation to a real solar cell stack compared to solar cell models computed by a conformal material growth assumption.

Research limitations/implications

So far in the topology simulation approach the authors assume CVD as the material deposition process for all material layers. However, during the fabrication process sputtering (i.e. physical vapor deposition) will be employed for the Al:ZnO and ITO layers. In the framework of this ongoing research project the authors will extend the topology simulation approach to take the different material deposition processes into account. The differences in predicted material interfaces will presumably be only minor compared to the results shown here and certainly be insignificant relative to the differences the authors observe for solar cell models computed assuming conformal material growth.

Originality/value

The authors systematically investigate and optimize the light trapping efficiency of a pyramid nano-structured back-reflector using rigorous electromagnetic field computations with a 3D finite element Maxwell solver. To the authors’ knowledge such an investigation has not been carried out yet in the solar cell research literature. The topology simulation approach (to the best of the authors’ knowledge) has previously not been applied to the modelling of solar cells. Typically a conformal layer growth assumption is used instead.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 March 2021

Miao-Tzu Lin

Flexible hydrogenated amorphous silicon (a-Si:H) solar cells have many advantages, including lower weight, good flexibility and light sensitivity. Moreover, a-Si:H solar cells can…

Abstract

Purpose

Flexible hydrogenated amorphous silicon (a-Si:H) solar cells have many advantages, including lower weight, good flexibility and light sensitivity. Moreover, a-Si:H solar cells can be used as sensors, as indoor light sources and can also generate electricity. These solar cells are suitable for the design of portable systems and curved materials. The purpose of this study was to integrate flexible a-Si:H solar cells and wearable technology and to apply the dual functions of photovoltaics and photo sensors to smart clothing and eyewear.

Design/methodology/approach

The integration of flexible a-Si:H solar cells and tri-colour light-emitting diodes (LEDs) was used to develop smart auto-flashing clothing. In addition, we combined flexible a-Si:H solar cells and twisted nematic (TN) liquid crystal (LC) cells to design smart self-activation eyewear.

Findings

The maximum power resistance value of flexible a-Si:H solar cells was used to deduce the equation of solar cell voltage value generated by different percentages of SUN (100% SUN means 100 mW/cm2). A solar cell was used as a photo sensor that connects a resistor in a series to the Arduino to detect the voltage value, and then different percentages of SUN are calculated from the equation. Applying the deduced equation to the smart phone APP and Arduino code, we developed a human–machine interface (HMI) to facilitate user operation.

Originality/value

In this study, the flexible a-Si:H solar cell performs the function of not only photovoltaic power generation but also that of a photo sensor. The smart auto-flashing clothing is suitable for traffic guides, joggers and people engaging in other night activities. This smart self-activating eyewear can adjust to light and protect the eyes.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 September 2019

Farah Khaleda Mohd Zaini, Vengadaesvaran Balakrishnan, A. Syafiq, Nasrudin Abd. Rahim, A.K. Pandey, Ramesh Kasi and Ramesh Subramaniam

The purpose of this paper is to implement coating system by varying the amount of nano-sized titanium dioxide, (nano-TiO2) combined with various organic binders and to study the…

Abstract

Purpose

The purpose of this paper is to implement coating system by varying the amount of nano-sized titanium dioxide, (nano-TiO2) combined with various organic binders and to study the coating effects on the performance of solar cell in terms of temperature and efficiency.

Design/methodology/approach

Nano-TiO2 coatings are developed in two types of binder networks; the combination of methyltrimethoxy silane (MTMS) and nitric acid and the combination of 3-aminopropyl triethoxysilane (APTES) and MTMS. Overall, the formulations method was cost-effective, produces good transparency, clear and managed to dry at room temperature. The coating mixtures were applied onto the glass substrate by using the dip-coating method and the coated substrate were sent for several characterizations.

Findings

This study demonstrated that TiO2 nanoparticle coating in APTES/MTMS matrix showed a thermal-decreasing result on solar cells, where the cell temperature is reduced to 46.81°C (T2 coating type) from 55.74°C (without coating) after 1-h exposure under 1,000 W/m2 irradiance in a solar simulator. Contrary to prior works where solar cell coatings were reported to reduce the cell temperature at the expense of the cell efficiency, the results from this study reported an improved fill factor (FF) of solar cells. From the photovoltaic (PV) characteristics study, the FF for solar cells is increased by approximately 0.2, i.e. 33.3 per cent, for all coatings compared to the non-coated cell.

Research limitations/implications

Findings will be able to contribute in the development of temperature-reducing and efficiency-enhancing coating for PV panels.

Practical implications

A simple dip-coating method provides an even distribution of TiO2 nanoparticle coating on the glass panel, which is cost-effective and time-efficient to reduce the temperature of solar cell while maintaining its efficiency.

Originality/value

The ability of nano-TiO2 coatings with a simple fabrication method and the right solution to reduce the surface temperature of solar cells while improving the FF of the cells.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 April 2014

Jihad Sidawi, Carine Zaraket, Roland Habchi, Nathalie Bassil, Chafic Salame, Michel Aillerie and Jean-Pierre Charles

The purpose of this paper is to investigate the dark properties as a function of reverse current induced defects. Dark characteristics of solar modules are very essential in the…

Abstract

Purpose

The purpose of this paper is to investigate the dark properties as a function of reverse current induced defects. Dark characteristics of solar modules are very essential in the understanding the functioning of these devices.

Design/methodology/approach

Reverse currents were applied on the photovoltaic (PV) modules to create defects. At several time intervals, dark characteristics along with surface temperature were measured.

Findings

Current-voltage (I-V) and capacitance-voltage (C-V) characteristics furnished valuable data and threshold values for reverse currents. Maximum module surface temperatures were directly related to each of the induced reverse currents and to the amount of leakage current. Microstructural damages, in the form of hot spots and overheating, are linked to reverse current effects. Experimental evidence showed that different levels of reverse currents are a major degrading factor of the performance of solar cells and modules.

Originality/value

These results give a reliable method to predict most of the essential characteristics of a silicon solar cell or a module. Similar test could help predict the amount of degradation or even the failure of PV modules.

Open Access
Book part
Publication date: 4 May 2018

Mohammad Irfan Fahmi, Hidayatullah, JhonsonEfendi Hutagalung and Sajadin Sembiring

Research to find new energy source is still an intensive work by researchers in this field. One of the energy sources with no negative impact to environment is solar energy. Solar

Abstract

Research to find new energy source is still an intensive work by researchers in this field. One of the energy sources with no negative impact to environment is solar energy. Solar cell is used to convert solar energy to electrical energy. The electrically powered solar cell in direct current (DC) power is not suitable for our daily office equipment since they need the alternating current (AC) power. This research has succeeded in realizing a solar cell automation tool based on Arduino Uno with input from solar energy, from which output AC voltage can be used for the needs of household appliances and office equipments. Output power of this tool is approximately 700 W, which can turn on the lights, charge the hand phones, laptops, and so forth.

Article
Publication date: 18 January 2023

Amirul Syafiq, Farah Khaleda Mohd Zaini, Vengadaesvaran Balakrishnan and Nasrudin Abd. Rahim

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO)…

Abstract

Purpose

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO), nano-tin dioxide (SnO2) and nano-titanium dioxide (TiO2), which can reduce the temperature of solar cells.

Design/methodology/approach

The thermal-insulation coating is designed using sol-gel process. The aminopropyltriethoxysilane/methyltrimethoxysilane binder system improves the cross-linking between the hydroxyl groups, -OH of nanoparticles. The isopropyl alcohol is used as a solvent medium. The fabrication method is a dip-coating method.

Findings

The prepared S1B1 coating (20 Wt.% of SnO2) exhibits high transparency and great thermal insulation property where the surface temperature of solar cells has been reduced by 13°C under 1,000 W/m2 irradiation after 1 h. Meanwhile, the Z1B2 coating (20 Wt.% of ZnO) reduced the temperature of solar cells by 7°C. On the other hand, the embedded nanoparticles have improved the fill factor of solar cells by 0.2 or 33.33%.

Research limitations/implications

Findings provide a significant method for the development of thermal-insulation coating by a simple synthesis process and low-cost materials.

Practical implications

The thermal-insulation coating is proposed to prevent exterior heat energy to the inside solar panel glass. At the same time, it can prevent excessive heating on the solar cell’s surface, later improves the efficiency of solar cell.

Originality/value

This study presents a the novel method to develop and compare the thermal-insulation coating by using various nanoparticles, namely, nano-TiO2, nano-SnO2 and nano-ZnO at different weight percentage.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 2000