Search results

1 – 10 of 587
Article
Publication date: 11 May 2020

Qizhu Yang, Kejian Ma, Huagang Zhang, Yanhui Wei and Ze Xiang

The purpose of this paper is to study the dynamic characteristics and seismic performance of the composite open-web grid floor structure.

Abstract

Purpose

The purpose of this paper is to study the dynamic characteristics and seismic performance of the composite open-web grid floor structure.

Design/methodology/approach

Studied by using mode-superposition response spectrum method and time history analysis method.

Findings

The results show that the vertical mode-superposition response spectrum method is close to the time history analysis method. The floor has strong seismic performance, and the deflection and internal force are not large under vertical seism. The vertical seismic action suggested that 10% of the representative value of gravity load should be used to ensure the safety of the structure.

Originality/value

In the design, the mid-span section should be properly strengthened or the variable section design should be adopted.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3544

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 September 2021

Xiuyun Zhu, Rong Pan, Jianbo Li and Gao Lin

In recent years, three-dimensional (3D) seismic base isolation system has been studied extensively. This paper aims to propose a new 3D combined isolation bearing (3D-CIB) to…

318

Abstract

Purpose

In recent years, three-dimensional (3D) seismic base isolation system has been studied extensively. This paper aims to propose a new 3D combined isolation bearing (3D-CIB) to mitigate the seismic response in both the horizontal and vertical directions.

Design/methodology/approach

The new 3D-CIB composed of laminated rubber bearing coupled with combined disk spring bearing (CDSB) was proposed. Comprehensive analysis of constitution and theoretical derivation for 3D-CIB were presented. The advantage of CDSB is that the constitution can be flexibly adjusted according to the requirements of the bearing capacity and vertical stiffness. Hence, four different combinations of CDSB were designed for the 3D-CIB and employed to isolate nuclear reactor building. A comparative study of the seismic response in terms of seismic action, acceleration floor response spectra (FRS), peak acceleration and relative displacement response was carried out.

Findings

3D-CIB can effectively reduce seismic action, FRS and peak acceleration response of the superstructure in both the horizontal and vertical directions. Overall, the horizontal isolation effectiveness of 3D-CIB was slightly influenced by vertical stiffness. The decrease in the vertical stiffness of the 3D-CIB can reduce the vertical FRS and shift the peak values to a lower frequency. The vertical peak acceleration decreased with a decrease in the vertical stiffness. The superstructure exhibited a rocking effect during the earthquake, and the decrease in the vertical stiffness may increase the rocking of the superstructure.

Originality/value

Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted by different constitutions, the vertical stiffness should be designed by properly accounting for the balance between the isolation effectiveness and displacement response. This study of isolation effectiveness can provide the technical basis for the application of 3D-CIB into real engineering of nuclear power plants.

Article
Publication date: 3 December 2018

Toufiq Ouzandja and Mohamed Hadid

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil…

Abstract

Purpose

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil properties, such as pore-water saturation, non-cohesive fines content FC, permeability k, porosity n and coefficient of uniformity Cu.

Design/methodology/approach

The inhomogeneous soil profile is idealized as a multi-layered saturated poroviscoelastic medium and is characterized by the Biot’s theory, with a shear modulus varying continuously with depth according to the Wichtmann’s model. Seismic response analysis has been evaluated through a computational model, which is based on the exact stiffness matrix method formulated in the frequency domain assuming that the incoming seismic waves consist of inclined P-SV waves.

Findings

Unlike the horizontal seismic response, the results indicate that the vertical one is strongly affected by the pore water saturation. Moreover, in the case of fully saturated soil profile, the same vertical response spectra are found for the two cases of soil behavior, linear and nonlinear.

Originality/value

This research is a detailed study of the geotechnical soil properties effect on the bi-directional seismic response of saturated inhomogeneous poroviscoelastic soil profile, which has not been treated before; the results are presented in terms of the peak acceleration ratio, as well as the free-field response spectra and the spectral ratio (V/H).

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 August 2023

Yi Sui, Yi Wang and Xiang Yu

The dynamic response of the nuclear power plants (NPPs) with pile foundation reinforcement have not yet been systemically investigated in detail. Thus, there is an urgent need to…

Abstract

Purpose

The dynamic response of the nuclear power plants (NPPs) with pile foundation reinforcement have not yet been systemically investigated in detail. Thus, there is an urgent need to improve evaluation methods for nonlithological foundation reinforcements, as this issue is bound to become an unavoidable task.

Design/methodology/approach

A nonlinear seismic wave input method is adopted to consider both a nonlinear viscoelastic artificial boundary and the nonlinear properties of the overburden layer soil. Subsequently, the effects of certain vital parameters on the structural response are analyzed.

Findings

A suitable range for the size of the overburden foundation is suggested. Then, when piles are used to reinforce the overburden foundation, the peak frequencies in the floor response spectra (FRS) in the horizontal direction becomes higher (38%). Finally, the Poisson ratio of the foundation soil has a significant influence on the FRS peak frequency in the vertical direction (reduce 35%–48%).

Originality/value

The quantifiable results are performed to demonstrate the seismic responses with respect to key design parameters, including foundational dimensions, the Poisson Ratio of the soil and the depth of the foundation. The results can help guide the development of seismic safety requirements for NPPs.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 2 May 2022

Yongliang Zhang, Jibei Ma, Xingchong Chen and Yun Wang

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force…

Abstract

Purpose

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.

Design/methodology/approach

Taking a 490 m deck type railway steel truss arch bridge as the background, the dynamic calculation model of the whole bridge was established by SAP2000 software. The seismic response analyses under one-, two- and three-dimension (1D, 2D and 3D) uniform ground motion excitations were carried out.

Findings

For the steel truss arch bridge composed of multiple arch ribs, any single direction ground motion excitation will cause large axial force in the chord of arch rib. The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation. The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation. For the bottom chord of arch rib, the arch foot is the weak part of earthquake resistance, but for the upper chord of arch rib, the arch foot, arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts. The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force, but the normal stress of the upper chord of the arch rib is caused by the axial force, in-plane and out of plane bending moment.

Originality/value

The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.

Article
Publication date: 7 September 2021

Ming Huang, Zhiqiang Zhang, Peizi Wei, Fei Liu and Youliang Ding

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support…

130

Abstract

Purpose

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support excitation and optimize the semi-active control schemes based on magneto-rheological (MR) dampers considering reference index as well as economical efficiency.

Design/methodology/approach

The finite element model of the long-span suspension bridge is established in MATLAB and ANSYS software, which includes different input currents and semi-active control conditions. Six apparent wave velocities are used to conduct non-linear time history analysis in order to consider the seismic response influence in primary members under traveling wave effect. The parameters α and β, which are key parameters of classical linear optimal control algorithm, are optimized and analyzed taking into account five different combinations to obtain the optimal control scheme.

Findings

When the apparent wave velocity is relatively small, the influence on the structural response is oscillatory. Along with the increase of the apparent wave velocity, the structural response is gradually approaching the response under uniform excitation. Semi-active control strategy based on MR dampers not only restrains the top displacement of main towers and relative displacement between towers and girders, but also affects the control effect of internal forces. For classical linear optimal control algorithm, the values of two parameters (α and β) are 100 and 8 × 10–6 considering the optimal control effect and economical efficiency.

Originality/value

The emphasis of this study is the traveling wave effect of the triple-tower suspension bridge under multi-support excitation. Meanwhile, the optimized parameters of semi-active control schemes using MR dampers have been obtained, providing relevant references in improving the seismic performance of three-tower suspension bridge.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 31 October 2023

Hongping Xing, Yu Liu and Xiaodan Sun

The smoothness of the high-speed railway (HSR) on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges, which may threaten the safety…

Abstract

Purpose

The smoothness of the high-speed railway (HSR) on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges, which may threaten the safety of running trains. Indeed, few studies have evaluated the exceeding probability of rail displacement exceeding the allowable standard. The purposes of this article are to provide a method for investigating the exceeding probability of the rail displacement of HSRs under seismic excitation and to calculate the exceeding probability.

Design/methodology/approach

In order to investigate the exceeding probability of the rail displacement under different seismic excitations, the workflow of analyzing the smoothness of the rail based on incremental dynamic analysis (IDA) is proposed, and the intensity measure and limit state for the exceeding probability analysis of HSRs are defined. Then a finite element model (FEM) of an assumed HSR track-bridge system is constructed, which comprises a five-span simply-supported girder bridge supporting a finite length CRTS II ballastless track. Under different seismic excitations, the seismic displacement response of the rail is calculated; the character of the rail displacement is analyzed; and the exceeding probability of the rail vertical displacement exceeding the allowable standard (2mm) is investigated.

Findings

The results show that: (1) The bridge-abutment joint position may form a step-like under seismic excitation, threatening the running safety of high-speed trains under seismic excitations, and the rail displacements at mid-span positions are bigger than that at other positions on the bridge. (2) The exceeding probability of rail displacement is up to about 44% when PGA = 0.01g, which is the level-five risk probability and can be described as 'very likely to happen'. (3) The exceeding probability of the rail at the mid-span positions is bigger than that above other positions of the bridge, and the mid-span positions of the track-bridge system above the bridge may be the most hazardous area for the running safety of trains under seismic excitation when high-speed trains run on bridges.

Originality/value

The work extends the seismic hazardous analysis of HSRs and would lead to a better understanding of the exceeding probability for the rail of HSRs under seismic excitations and better references for the alert of the HSR operation.

Article
Publication date: 27 September 2022

Yong Huang, Guangyou Song and Guochang Li

The purpose of this study is to explore the seismic damage mechanism of the Dayemaling Bridge during the Maduo earthquake and discuss the seismic damage characteristics of the…

Abstract

Purpose

The purpose of this study is to explore the seismic damage mechanism of the Dayemaling Bridge during the Maduo earthquake and discuss the seismic damage characteristics of the high-pier curved girder bridge.

Design/methodology/approach

In this study, the numerical simulation method is used to analyze the seismic response using synthetic near-field ground motion records.

Findings

The near-field ground motion of the Maduo earthquake has an obvious directional effect, it is more likely to cause bridge seismic damage. Considering the longitudinal slope of the bridge and adopting the continuous girder bridge form, the beam end displacement of the curved bridge can be effectively reduced, and the collision force of the block and the bending moment of the pier bottom are reduced, so the curved bridge with longitudinal slope is adopted.

Originality/value

Combined with the seismic damage phenomenon of bridges in real earthquakes, the seismic damage mechanism and vulnerability characteristics of high-pier curved girder bridges are discussed by the numerical simulation method, which provides technical support for the application of such bridges in high seismic intensity areas.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 February 2019

Charis Apostolopoulos, Argyro Drakakaki and Maria Basdeki

As it is widely known, corrosion is a major deterioration factor for structures which are located on coastal areas. Corrosion has a great impact on both the durability and seismic

Abstract

Purpose

As it is widely known, corrosion is a major deterioration factor for structures which are located on coastal areas. Corrosion has a great impact on both the durability and seismic performance of reinforced concrete structures. In the present study, two identical reinforced concrete columns were constructed and mechanical tests were organized to simulate seismic conditions. Prior to the initiation of the mechanical tests, the base of one of the two columns was exposed to predetermined accelerated electrochemical corrosion (at a height of 60 cm from the base). After the completion of the experimental loading procedure, the hysteresis curves – for unilateral and bilateral loadings – of the two samples were presented and analyzed (in terms of strength, displacement and dissipated energy). The paper aims to discuss this issue.

Design/methodology/approach

In the present study, two identical reinforced concrete columns were constructed and mechanical tests were organized to simulate seismic conditions. The tests were executed under the combination of a constant vertical force with horizontal, gradually increasing, cyclic loads. The implemented displacements, of the free end of the column, ranged from 0.2 to 5 percent. Prior to the initiation of the mechanical tests, the base of one of the two columns was exposed to predetermined accelerated electrochemical corrosion (at a height of 60 cm from the base). After the completion of the experimental loading procedure, the hysteresis curves of the two samples were presented and analyzed (in terms of strength, displacement and dissipated energy).

Findings

Analyzing the results, for both unilateral and bilateral loadings, a significant reduction of the seismic performance of the corroded column was highlighted. The corrosion damage imposed on the reference column resulted in the dramatic decrease of its energy reserves, even though an increase in ductility was recorded. Furthermore, more attention was paid to the consequences of the uneven corrosion damage, recorded on the steel bars examined, on ductility, hysteretic behavior and damping ratio.

Originality/value

In the present paper, the influence of the corrosion effects on the cyclic response of structural elements was presented and analyzed. The simulation of the seismic conditions was achieved by imposing, at the same time, a constant vertical force and horizontal, gradually increasing, cyclic loads. Finally, an evaluation of the performance of a column, under both unilateral and bilateral loadings, took place before and after corrosion.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 587