Search results

1 – 10 of 30
Article
Publication date: 27 September 2022

Yong Huang, Guangyou Song and Guochang Li

The purpose of this study is to explore the seismic damage mechanism of the Dayemaling Bridge during the Maduo earthquake and discuss the seismic damage characteristics of the high

Abstract

Purpose

The purpose of this study is to explore the seismic damage mechanism of the Dayemaling Bridge during the Maduo earthquake and discuss the seismic damage characteristics of the high-pier curved girder bridge.

Design/methodology/approach

In this study, the numerical simulation method is used to analyze the seismic response using synthetic near-field ground motion records.

Findings

The near-field ground motion of the Maduo earthquake has an obvious directional effect, it is more likely to cause bridge seismic damage. Considering the longitudinal slope of the bridge and adopting the continuous girder bridge form, the beam end displacement of the curved bridge can be effectively reduced, and the collision force of the block and the bending moment of the pier bottom are reduced, so the curved bridge with longitudinal slope is adopted.

Originality/value

Combined with the seismic damage phenomenon of bridges in real earthquakes, the seismic damage mechanism and vulnerability characteristics of high-pier curved girder bridges are discussed by the numerical simulation method, which provides technical support for the application of such bridges in high seismic intensity areas.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2023

Mohammad Farhan Shaikh and Nallasivam K

In this study, a finite element model of a box-girder bridge along with the railway sub-track system is developed to predict the static behavior due to different combinations of…

83

Abstract

Purpose

In this study, a finite element model of a box-girder bridge along with the railway sub-track system is developed to predict the static behavior due to different combinations of the Indian railway system and free vibration responses resulting in different natural frequencies and their corresponding mode shapes.

Design/methodology/approach

The modeling and evaluation of the bridge and sub-track system were performed using non-closed form finite element method (FEM)-based ANSYS software.

Findings

From the analysis, the worst possible cases of deformation and stress due to different static load combinations were determined in the static analysis, while different natural frequencies were determined in the free vibrational analysis that can be used for further analysis because of the dynamic effect of the train vehicle.

Research limitations/implications

The scope of the current investigation is confined to the structure's static and free vibration analysis. However, this study will help the designers obtain relevant information for further analysis of the dynamic behavior of the bridge model.

Originality/value

In static analysis, the maximum deformation of the bridge deck was found to be 10.70E-03m due to load combination 5, whereas the maximum natural frequency for free vibration analysis is found to be 4.7626 Hz.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 June 2022

Huizhong Xiong, Shengtang Jiang, Yong Huang and Jian Zhang

In order to explore the damage probability of bridge engineering in the event of earthquake in the construction stages, the analysis method of seismic vulnerability in the…

Abstract

Purpose

In order to explore the damage probability of bridge engineering in the event of earthquake in the construction stages, the analysis method of seismic vulnerability in the construction stages is proposed in this paper.

Design/methodology/approach

Based on the joint simulation function of construction stage conditions and seismic response conditions of MIDAS/Civil finite element analysis software, combined with the method of IDA analysis and compared the relationship between demand and capacity.

Findings

The research shows that: (1) the average seismic loss in different construction stages varies greatly; (2) the seismic vulnerability varies greatly in different construction stages. The vulnerability of the bridge in stage 6 is determined by the longitudinal direction of bridge. Therefore, during the construction of the whole bridge, we should focus on strengthening the disaster and loss prevention strategy of earthquake insurance in the longitudinal direction of bridge. (3) The application of the secondary dead load mainly affects the fragilityin the longitudinal direction of bridge, but has little effect on the fragility in the transversal direction of bridge.

Originality/value

This paper is to explore the seismic vulnerability of a typical simply supported continuous bridge during the construction stages, and to trace the entire construction stage of a typical simply supported continuous bridge. According to the characteristics of the system transformation in the actual construction steps, demand-capacity ratios were established based on incremental dynamic analysis (IDA) and performance indicators of moment curvature and stability, and the seismic vulnerability research is carried out for the construction stages prone to earthquake damage. Furthermore, it provides a basis for seismic risk assessment of such bridges in different construction stages.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 July 2020

Xu Li, Jun Li, Xiaoyi Zhang, Jianfeng Gao and Chao Zhang

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Abstract

Purpose

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Design/methodology/approach

However, the nonlinear analysis on damper parameters is usually computational intensive and nonobjective. To address these issues, this paper proposes a simplified method to determine the viscous damper parameters for double-tower cable-stayed bridges. An empirical formula of the equivalent damping ratio of viscous dampers is established through decoupling nonclassical damping structures and linearization of nonlinear viscous dampers. Shaking table tests are conducted to verify the feasibility of the proposed method. Moreover, this simplified method has been proved in long-span cable-stayed bridges.

Findings

The feasibility of this method is verified by the simplified model shaking table test. This simplified method for determining the parameters of viscous dampers is verified in cable-stayed bridges with different spans.

Originality/value

This simplified method has been validated in cable-stayed bridges with various spans.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 August 2021

Kexin Zhang, Tianyu Qi, Dachao Li, Xingwei Xue and Zhimin Zhu

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health…

Abstract

Purpose

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health monitoring after reinforcement were carried out. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved.

Design/methodology/approach

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. High strength, low relaxation steel strand with high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel strand and steel plate was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on finite element model.

Findings

The cumulative upward deflection of the second span the third span was 39.7 mm, which is basically consistent with the theoretical value, and the measured value is smaller than the theoretical value. The deflection value of the second span during data acquisition was −20 mm–10 mm, which does not exceed the maximum deflection value of live load, and the deflection of the bridge is in a safe state during normal use. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

Originality/value

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. To investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening and health monitoring after reinforcement were carried out.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 24 April 2020

Jiawei Wang and Quansheng sun

In order not to affect the highway and railway traffic under the bridge during the construction process, bridges adopting swivel construction method are increasingly used at areas…

Abstract

Purpose

In order not to affect the highway and railway traffic under the bridge during the construction process, bridges adopting swivel construction method are increasingly used at areas where the traffic is heavy. Previous studies are mostly conducted by assuming that the bridge is under its own stability conditions, without considering the impact of construction error, changes of external condition and wind-induced vibration on the stability of the bridge, which poses serious challenges to the bridge construction process. This paper aims to analyze the extent to which static load and fluctuating wind effect influence structural stability and to test the credibility of the structure.

Design/methodology/approach

A finite element calculation method is used to analyze a T-shaped rigid frame swivel bridge. A full bridge model was built, and a local model of the turntable structure established; the two are then combined means of node coupling. Subsequently, the three sensitivity indexes – deflection rate, stress change rate and the change rate of spherical hinges – are used to evaluate in what way the bridge stability is influenced under various factors.

Findings

It is found that the stability of the swivel bridge is quite sensitive to unilateral overweight, steel beam tension and wind-induced vibration effects but less sensitive to the change of bulk density. Also found is that the change of elastic modulus exerts some effects on deflection but has negligible effects on other stability indexes. Furthermore, the transverse unbalanced torque on the bridge generated by wind-induced vibration is an important factor in determining the size of the turntable, indicating that it is not just controlled by the weight of the bridge.

Originality/value

All factors affecting the stability of swivel construction are analyzed, and solutions to reduce the influence are proposed. The influence of wind-induced vibration effects on swivel construction is analyzed for the first time. It is pointed out that wind-induced vibration effects have great influence on the structure, and its influence could not be neglected.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 April 2022

Yan Liang, Yingying Wei, Panjie Li, Huan Niu and Jingxiao Shu

Although mechanical behavior of rigid frame pier has been clearly recognized, their time-varying seismic performance are yet to be well characterized due to some offshore piers

Abstract

Purpose

Although mechanical behavior of rigid frame pier has been clearly recognized, their time-varying seismic performance are yet to be well characterized due to some offshore piers that are eroded by chloride ion and located in earthquake-prone area. In this study, the time-variant seismic fragility analysis was conducted to evaluate seismic performance of rigid frame pier under four damage states with considering the time-varying characteristics of the material.

Design/methodology/approach

This paper establishes the nonlinear finite element model for the investigated offshore reinforcement concrete (RC) pier with considering the time-varying durability damage of the materials and defines the damage state, damage position and damaged index of the offshore RC pier. It also analyzes the time-varying seismic fragility of the offshore RC pier by using the capacity demand ratio method in the whole life cycle.

Findings

The results show that chloride induced corrosion has a significant effect on the rigid frame pier and bending capacity of top section is less than that of bottom section. The rate of decline accelerates after the service life reaching 30 years under the coupling of the earthquake and the environmental erosion. In the early years of service, the seismic fragility of the structure changed slowly.

Originality/value

This paper analyzes the influencing factors of seismic performance of rigid structure pier, and analyzes the seismic capacity and seismic performance of rigid structure pier under different service periods.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 May 2023

Yan Liang, Yingying Wei, Panjie Li, Liangliang Li and Zhenghao Zhao

For coastal bridges, the ability to recover traffic functions after the earthquake has crucial implications for post-disaster reconstruction, which makes resilience become a…

Abstract

Purpose

For coastal bridges, the ability to recover traffic functions after the earthquake has crucial implications for post-disaster reconstruction, which makes resilience become a significant index to evaluate the seismic behavior. However, the deterioration of the material is particularly prominent in coastal bridge, which causes the degradation of the seismic behavior. As far, the research studies on resilience of coastal bridges considering multiple degradation factors and different disaster prevention capability are scarce. For further evaluating the seismic behavior of coastal bridge in the long-term context, the seismic resilience is conducted in this paper with considering multiple durability damage.

Design/methodology/approach

The fuzzy theory and time-varying fragility analysis are combined in this paper to obtain the life-cycle resilience of coastal bridges.

Findings

The results show that durability damage has a remarkable impact on the resilience. After 100 years of service, the seismic resilience of bridge with poor disaster-prevention capability has greatest reduction, about 18%. In addition, the improvement of the disaster prevention capability can stabilize the resilience of the bridge at a higher level.

Originality/value

In this paper, the time-varying fragility analysis of case bridge are evaluated with considering chloride ion erosion and concrete carbonization, firstly. Then, combining fuzzy theory and fragility analysis, the triangular fuzzy values of resilience parameters under different service period are obtained. Finally, the life-cycle resilience of bridge in different disaster prevention capability is analyzed.

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 30