Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 23 January 2023

Junshan Hu, Jie Jin, Yueya Wu, Shanyong Xuan and Wei Tian

Aircraft structures are mainly connected by riveting joints, whose quality and mechanical performance are directly determined by vertical accuracy of riveting holes. This paper…

Abstract

Purpose

Aircraft structures are mainly connected by riveting joints, whose quality and mechanical performance are directly determined by vertical accuracy of riveting holes. This paper proposed a combined vertical accuracy compensation method for drilling and riveting of aircraft panels with great variable curvatures.

Design/methodology/approach

The vertical accuracy compensation method combines online and offline compensation categories in a robot riveting and drilling system. The former category based on laser ranging is aimed to correct the vertical error between actual and theoretical riveting positions, and the latter based on model curvature is used to correct the vertical error caused by the approximate plane fitting in variable-curvature panels.

Findings

The vertical accuracy compensation method is applied in an automatic robot drilling and riveting system. The result reveals that the vertical accuracy error of drilling and riveting is within 0.4°, which meets the requirements of the vertical accuracy in aircraft assembly.

Originality/value

The proposed method is suitable for improving the vertical accuracy of drilling and riveting on panels or skins of aerospace products with great variable curvatures without introducing extra measuring sensors.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 18 July 2018

Sangho Ha, Kasin Ransikarbum, Hweeyoung Han, Daeil Kwon, Hyeonnam Kim and Namhun Kim

The purpose of this study is to mitigate the dimensional inaccuracy due to vertical curling/bending deformation of three-dimensional (3D) printed parts produced by selective laser…

Abstract

Purpose

The purpose of this study is to mitigate the dimensional inaccuracy due to vertical curling/bending deformation of three-dimensional (3D) printed parts produced by selective laser sintering (SLS) using PA12 based on dimensional compensation of the computer-aided design (CAD) model.

Design/methodology/approach

To carry out this study, specially designed features are initially produced as references, and the dimensional deviations from the vertical bending deformation of the SLS process are analyzed. Next, the deformation patterns are formulated using a polynomial regression model in the global Cartesian coordinates of the building platform. Then, the compensation algorithm is implemented and the original 3D CAD file is preprocessed with an inverse transformation of the features to compensate the deformation errors.

Findings

It was found that the 3D printed parts from the SLS process have the dimensional inaccuracy due to the vertical bending pattern of the quadratic form. By implementing the compensation algorithm, it was statistically shown to effectively reduce bending deformations of various sample parts, including the automotive components, in SLS.

Research limitations/implications

The position of samples in a batch has a direct impact on not only bending deformation but also on horizontal shape geometry error. However, the application of this algorithm is focused on the vertical bending deformation, which is estimated as a major part of dimensional inaccuracy.

Practical implications

This paper provides a practical case study with a real vehicle part. The algorithm was shown to provide a more realistic solution to the dimensional deformation of printed products, which is not manageable by simply using the constant scale factors provided by SLS 3D printer manufacturers.

Originality/value

This paper suggests that the vertical bending deformation from SLS’s 3D printed complex parts can be improved through the proposed compensation algorithm. The compensation algorithm was constructed by using the predictive regression model created from the bending deformation patterns of reference samples. The proposed compensation algorithm can be further used and applied for other complex samples without making additional reference parts.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 September 2021

Yuezong Wang, Jinghui Liu, Mengfei Guo and LiuQIan Wang

A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is…

Abstract

Purpose

A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer.

Design/methodology/approach

First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy.

Findings

The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures.

Originality/value

Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.

Details

Rapid Prototyping Journal, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 October 2006

Ameya Shankar Limaye and David W. Rosen

Print‐through results in unwanted polymerization occurring beneath a part cured using Mask Projection Stereolithography (MPSLA) and thus creates errors in its vertical dimension…

Abstract

Purpose

Print‐through results in unwanted polymerization occurring beneath a part cured using Mask Projection Stereolithography (MPSLA) and thus creates errors in its vertical dimension. In this paper, the “Compensation Zone approach” is presented to avoid this error.

Design/methodology/approach

Compensation zone approach entails modifying the geometry of the part to be cured. A volume (compensation zone) is subtracted from underneath the CAD model in order to compensate for the increase in the Z dimension that would occur due to print‐through. Three process variables have been identified: thickness of compensation zone, thickness of every layer and exposure distribution across every image used to cure a layer. Analytical relations have been formulated between these process variables in order to obtain dimensionally accurate parts. The compensation zone approach is simulated on a test part with a slanted down‐facing surface.

Findings

The simulation results show that the compensation zone approach can reduce print‐ through errors significantly. In addition, it has been demonstrated numerically that the approach can also alleviate the problem of stair stepping.

Research limitations/implications

The derivations in the compensation zone approach are made with the following simplifying assumptions: exposure is additive; threshold model of resin cure is valid; the resin molecules underneath the part being cured are stationary; and the cleaning process can completely clean the part off the surrounding resin, due to these assumptions, the compensation zone model might require some calibration.

Originality/value

The errors in the vertical direction of a MPSLA build have been modeled for the first time. Compensation zone approach is a new concept.

Details

Rapid Prototyping Journal, vol. 12 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 September 2023

Xinyu Zhang and Liling Ge

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the…

Abstract

Purpose

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

First, the differential body is set on a rotation platform before measuring. Then one laser sensor called as “primary sensor”, is installed on the intern of the differential body. The spherical surface and four holes on the differential body are sampled by the primary sensor when the rotation platform rotates one revolution. Another sensor called as “secondary sensor”, is installed above to sample the external cylinder surface and the planar surface on the top of the differential body, and the external cylinder surface and the planar surface are high in manufacturing precision, which are used as datum surfaces to compute the errors caused by the motion of the rotation platform. Finally, the sampled points from the primary sensor are compensated to improve the measurement accuracy.

Findings

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body. Based on the characteristics of the measurement data, a gradient image-based method is proposed to distinguish different objects from laser measurement data. A case study is presented to validate the measurement principle and data processing approach.

Research limitations/implications

The study investigates the possibility of correction of sensor data by the measurement results of multiple sensors to improving measurement accuracy. The proposed technique enables the error analysis and compensation by the geometric correlation relationship of various features on the measurand.

Originality/value

The proposed error compensation principle by using multiple sensors proved to be useful for the design of new measurement device for special part inspection. The proposed approach to describe the measuring data by image also is proved to be useful to simplify the measurement data processing.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 January 2008

Kun Tong, Sanjay Joshi and E. Amine Lehtihet

The purpose of this research is to extend the previous approach to software error compensation to fused deposition modeling (FDM) machines and explores the approach to apply…

4237

Abstract

Purpose

The purpose of this research is to extend the previous approach to software error compensation to fused deposition modeling (FDM) machines and explores the approach to apply compensation by correcting slice files.

Design/methodology/approach

In addition to applying the stereolithography (STL) file‐based compensation method from earlier research; a new approach using the slice file format to apply compensation is presented. Under this approach, the confounded effects of all errors in a FDM machine are mapped into a “virtual” parametric machine error model. A 3D artifact is built on the FDM machine and differences between its actual and nominal dimensions are used to estimate the coefficients of the error functions. A slice file compensation method is developed and tested on two types of parts as a means for further improving the error compensation for feature form error improvement. STL file compensation is also applied to a specific FDM 3000 machine and the results are compared with those of a specific SLA 250 machine.

Findings

The two compensation methods are compared. Although, the slice file compensation method theoretically allows higher compensation resolution, the actual machine control resolution of the FDM machine can be a limitation which makes the difference between STL compensation and slice file compensation indistinguishable. However, as the control resolution is increased, this method will make it possible to provide a higher degree of compensation.

Originality/value

Compensation method applied to slice file format is developed for FDM machines and its limitations are explored. Based on the experimental study, dimensional accuracy of parts is considerably improved by the software error compensation approach.

Details

Rapid Prototyping Journal, vol. 14 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 November 2022

Pablo Zapico, Fernando Peña, Gonzalo Valiño, José Carlos Rico, Víctor Meana and Sabino Mateos

The lack of geometric and dimensional accuracy of parts produced by additive manufacturing (AM) is directly related to the machine, material and process used. This paper aims to…

116

Abstract

Purpose

The lack of geometric and dimensional accuracy of parts produced by additive manufacturing (AM) is directly related to the machine, material and process used. This paper aims to propose a method for the analysis and compensation of machine-related geometric errors applicable to any AM machine, regardless of the manufacturing process and technology used.

Design/methodology/approach

For this purpose, an error calculation model inspired by those used in computerized numerical control machines and coordinate measuring machines was developed. The error functions of the model were determined from the position deviations of a set of virtual points that are not sensitive to material and process errors. These points were obtained from the measurement of an ad hoc designed and manufactured master artefact. To validate the model, off-line compensation was applied to both the original designed artefact and an example part.

Findings

The geometric deviations in both cases were significantly smaller than those found before applying the geometric compensation. Dimensional enhancements were also achieved on the example part by using a correction parameter available in the three-dimensional printing software, whose value was adjusted from the measurement of the geometrically compensated master artefact.

Research limitations/implications

The errors that persist in the part derive from both material and process. Compensation for these type of errors requires a detailed analysis of the influencing parameters, which will be the subject of future research.

Originality/value

The use of the virtual-point-based error model increases the quality of additively manufactured parts and can be used in any AM system.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 March 2015

Shengbo Sang, Ruiyong Zhai, Wendong Zhang, Qirui Sun and Zhaoying Zhou

This study aims to design a new low-cost localization platform for estimating the location and orientation of a pedestrian in a building. The micro-electro-mechanical systems…

Abstract

Purpose

This study aims to design a new low-cost localization platform for estimating the location and orientation of a pedestrian in a building. The micro-electro-mechanical systems (MEMS) sensor error compensation and the algorithm were improved to realize the localization and altitude accuracy.

Design/methodology/approach

The platform hardware was designed with common low-performance and inexpensive MEMS sensors, and with a barometric altimeter employed to augment altitude measurement. The inertial navigation system (INS) – extended Kalman filter (EKF) – zero-velocity updating (ZUPT) (INS-EKF-ZUPT [IEZ])-extended methods and pedestrian dead reckoning (PDR) (IEZ + PDR) algorithm were modified and improved with altitude determined by acceleration integration height and pressure altitude. The “AND” logic with acceleration and angular rate data were presented to update the stance phases.

Findings

The new platform was tested in real three-dimensional (3D) in-building scenarios, achieved with position errors below 0.5 m for 50-m-long route in corridor and below 0.1 m on stairs. The algorithm is robust enough for both the walking motion and the fast dynamic motion.

Originality/value

The paper presents a new self-developed, integrated platform. The IEZ-extended methods, the modified PDR (IEZ + PDR) algorithm and “AND” logic with acceleration and angular rate data can improve the high localization and altitude accuracy. It is a great support for the increasing 3D location demand in indoor cases for universal application with ordinary sensors.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 May 2016

Yanbing Ni, Biao Zhang, Wenxia Guo and Cuiyan Shao

The purpose of this paper is to develop a means of the kinematic calibration of a parallel manipulator with full-circle rotation.

Abstract

Purpose

The purpose of this paper is to develop a means of the kinematic calibration of a parallel manipulator with full-circle rotation.

Design/methodology/approach

An error-mapping model based on the space vector chain is formulated and parameter identification is proposed based on double ball-bar (DBB) measurements. The measurement trajectory is determined by the motion characteristics of this mechanism and whether the error sources can be identified. Error compensation is proposed by modifying the inputs, and a two-step kinematic calibration method is implemented.

Findings

The simulation and experiment results show that this kinematic calibration method is effective. The DBB length errors and the position errors in the end-effector of the parallel manipulator with full-circle rotation are greatly reduced after error compensation.

Originality/value

By establishing the mapping relationship between measured error data and geometric error sources, the error parameters of this mechanism are identified; thus, the pose errors are unnecessary to be measured directly. The effectiveness of the kinematic calibration method is verified by computer simulation and experiment. This proposed calibration method can help the novel parallel manipulator with full-circle rotation and other similar parallel mechanisms to improve their accuracy.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2003

Kun Tong, E. Amine Lehtihet and Sanjay Joshi

This paper is motivated by the need for a generic approach to evaluate the volumetric accuracy of rapid prototyping (RP) machines. The approach presented in this paper is inspired…

1612

Abstract

This paper is motivated by the need for a generic approach to evaluate the volumetric accuracy of rapid prototyping (RP) machines. The approach presented in this paper is inspired in large part by the techniques developed over the years for the parametric evaluation of coordinate measuring machine (CMM) errors. In CMM metrology, the parametric error functions for the machine are determined by actual measurement of a master reference artifact with known characteristics. In our approach, the RP machine is used to produce a generic artifact, which is then measured by a master CMM, and measurement results are used to infer the RP machine's parametric error functions. The results presented demonstrate the feasibility of such an approach on a two‐dimensional model.

Details

Rapid Prototyping Journal, vol. 9 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000