Search results

1 – 10 of over 11000
Article
Publication date: 15 June 2015

Yanpei Chen, Pierre Evesque and Meiying Hou

The purpose of this paper is to investigate the local feature of driven granular gases in event-driven molecular dynamic simulation, in order to achieve spatial profiles of local…

Abstract

Purpose

The purpose of this paper is to investigate the local feature of driven granular gases in event-driven molecular dynamic simulation, in order to achieve spatial profiles of local velocity distribution and granular temperature, and the local state with various coefficients of restitution.

Design/methodology/approach

Event-driven molecular dynamic simulation is performed to study a vibro-fluidized granular gas system. Triangular-wave vibration is adopted in the simulation. The authors focus on the steady state of a driven granular gas.

Findings

The simulation finds the local velocity distribution is asymmetric along vibration direction in this driven granular gas system, which agrees with the experimental results obtained in micro-gravity. A nonlinear spatial profile of the skewness of local velocity distribution in vibration direction is found in the simulation. Furthermore, it is found that the value of skewness increases with the system dissipation. It is also found that the two temperature components T+ and T− differ from each other. This shows breakdown of energy equipartition. The ratio between them drops exponentially along y direction in various coefficients of restitution. All results confirm that the bulk boundary effect relates to the dissipation properties of granular gases.

Originality/value

This is the first MD simulation that investigates the bulk boundary effect to the local velocity distribution. The spatial profiles of the skewness of local velocity distribution are also investigated when changing the coefficient of restitution to study the influence of the system dissipative nature.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1993

Douglas E. Dunn

An improved velocity‐space carrier transport model is presented, based on a direct solution of the Boltzmann Transport Equation. This model attempts to achieve the computational…

Abstract

An improved velocity‐space carrier transport model is presented, based on a direct solution of the Boltzmann Transport Equation. This model attempts to achieve the computational efficiency required for device simulation, while still solving for the distribution function itself. This preserves critical fine structure effects due a non‐ideal band structure and forward scattering mechanisms. The model includes a numerically efficient representation of three dimensional k‐space formulated around a 1D velocity‐space variable, and the particle energy. The number of empirical parameters in the model is reduced to a single constant per scattering mechanism. A physically intuitive solution algorithm is developed which repeatedly shifts and shapes the estimate of the distribution until convergence. Results are presented for the steady‐state homogeneous case in silicon and GaAs, which are of comparable computational cost as drift‐diffusion simulations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 12 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 30 January 2023

Kaiwen Pang, Xianbei Huang, Zhuqing Liu, Yaojun Li, Wei Yang and Jiaxing Lu

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

Abstract

Purpose

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

Design/methodology/approach

The kω and Shear-Stress Transport (SST) kω models are modified by using the complete eddy viscosity coefficient expression, and the latter is modified by using two sets of model coefficients. The two bifurcation models were tested in three cases: rotating channel flow with system rotation, Taylor–Couette flow with wall rotation and curvature effect and swirling flow through an abrupt axisymmetric expansion with inlet swirling flow.

Findings

In these flows, the bifurcation approach can significantly improve the prediction performance of the base model in the fluctuation velocity. The deviation of the BSkO model is slightly superior to the BkO model by about 2% in the Taylor–Couette flow. The prediction effect of the root-mean-square (RMS) velocity of the BSkO model increases by about 4–5% as the number of grids increases about 2.37 times, and the best is the Large Eddy Simulation (LES) grid used. Finally, compared with the SST kω model, the average iteration time of the SST with curvature correction (SST-CC), bifurcation kω (BkO) and bifurcation SST kω (BSkO) models increased by 27.7%, 86.9% and 62.3%, respectively.

Originality/value

This study is helpful to understand further the application of the bifurcation method in the turbulence model.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2014

Shantanu Pramanik and Manab Kumar Das

The purpose of the present study is to investigate the flow and turbulence characteristics of a turbulent wall jet flowing over a surface inclined with the horizontal and to…

Abstract

Purpose

The purpose of the present study is to investigate the flow and turbulence characteristics of a turbulent wall jet flowing over a surface inclined with the horizontal and to investigate the effect of variation of the angle of inclination of the wall on the flow structure of the wall jet.

Design/methodology/approach

The high Reynolds number two-equation κ− model with standard wall function is used as the turbulence model. The Reynolds number considered for the present study is 10,000. The Reynolds averaged Navier-Stokes (RANS) equations are used for predicting the turbulent flow. A staggered differencing technique employing both contravariant and Cartesian components of velocity has been applied. Results for distribution of wall static pressure and skin friction, decay of maximum streamwise velocity, streamwise variation of integral momentum and energy flux have been compared for the cases of α=0°, 5°, and 10°.

Findings

Flow field has been represented in terms of streamwise and lateral velocity contours, static pressure contour, vorticity contour and streamwise velocity and static pressure profiles at different locations along the oblique offset plate. Distribution of Reynolds stresses in terms of spanwise, lateral and turbulent shear stresses, and turbulent kinetic energy and its dissipation rate have been presented to describe the turbulent characteristics. Similarity of streamwise velocity and the velocity parallel to the oblique wall has been observed in the developed region of the wall jet flow. A decaying trend is observed in the variation of total integral momentum flux in the developed region of the wall jet which becomes more evident with increase in oblique angle. Developed flow region has indicated trend of similarity in profiles of streamwise velocity as well as velocity component parallel to the oblique wall. A depression in wall static pressure has been observed near the nozzle exit when the wall is inclined and the depression increases with increase in inclination. Effect of variation of oblique angles on skin friction coefficient has indicated that it decreases with increase in oblique angle. Growth of the outer and inner shear layers and spread of the jet shows linear variation with distance along the oblique wall. Decay of maximum streamwise velocity is found to be unaffected by variation in oblique angle except in the far downstream region. The streamwise variation of spanwise integral energy shows increase in oblique angle and decreases the magnitude of energy flux through the domain. In the developed flow region, streamwise variation of centreline turbulent intensities shows increased values with increase in oblique angle, while turbulence intensities along the jet centreline in the region X<12 remain unaffected by change in oblique angles. Normalized turbulent kinetic energy distribution highlights the difference in turbulence characteristics between the wall jet and reattached offset jet flow. Near wall velocity distribution shows that the inner region of boundary layer of the developed oblique wall jet follows a logarithmic profile, but it shows some difference from the standard logarithmic curve of turbulent boundary layers which can be attributed to an increase in skin friction coefficient and a decrease in thickness of the wall attached layer.

Originality/value

The study presents an in-depth investigation of the interaction between the jet and the inclined wall. It is shown that due to the Coanda effect, the jet follows the nearby wall. The findings will be useful in the study of combined flow of wall jet and offset jet and dual offset jet on oblique surfaces leading to a better design of some mechanical jet flow devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Yuanlong Chen, Tingbo Hou and Xiaochao Zhou

The purpose of this paper is to ensure adequate thermal management to remove and dissipate the heat produced by a light-emitting diode (LED) and to guarantee reliable and safe…

Abstract

Purpose

The purpose of this paper is to ensure adequate thermal management to remove and dissipate the heat produced by a light-emitting diode (LED) and to guarantee reliable and safe operation.

Design/methodology/approach

A three-dimensional (3-D) computational fluid dynamics (CFD) model was used to analyze the distribution of fluid velocities among microchannels at four different aspect ratios.

Findings

The results showed that at the same inlet flow rate, the larger the aspect ratio of the microchannels, the better the uniformity of the internal fluid velocity and thus better the heat dissipation performance on the surface of the high-power LED chip. In addition, the thermal performance of a high-power LED water cooling system with four different aspect ratios’ microchannel structures is further studied experimentally. Specifically, the coupling effect between the fluid velocity distribution in the microchannels and the heat dissipation performance of a high-power LED water cooling system is qualitatively analyzed and compared with the simulation results of the fluid velocity distribution. The results fully demonstrated that a larger aspect ratio of the microchannels results in better heat dissipation performance on the surface of the high-power LED chip.

Originality/value

Optimizing the structural parameters to facilitate a relatively uniform velocity distribution to improve the water cooling system performance may be a key factor to be considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2021

Z.B. Xing, Xingchao Han, Hanbing Ke, Q.G. Zhang, Zhiping Zhang, Huijin Xu and Fuqiang Wang

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow…

Abstract

Purpose

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods.

Design/methodology/approach

Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established.

Findings

Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model.

Originality/value

This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 January 2020

Maher Dhahri and Hana Aouinet

The purpose of this study is to investigate air flow, temperature distribution and thermal confort in natural ventilation induced by solar chimney for different operating.

Abstract

Purpose

The purpose of this study is to investigate air flow, temperature distribution and thermal confort in natural ventilation induced by solar chimney for different operating.

Design/methodology/approach

Numerical simulation is performed using a commercial computational fluid dynamics (CFD) package ANSYS CFX software to understand the effects of air temperature, air velocity and solar heat flux on the performance of the solar chimney and thermal comfort. The comfort level was evaluated using the air diffusion performance index (ADPI) according to ASHRAE (55-210). The flow was investigated at inclination angles 45° solar heat flux 550-750 W/m2 and in a solar chimney of 1.4 m length, 0.6 m width and 0.20 m air gab.

Findings

The numerical results from the present simulation were first validated with experimental data, which was used for the thermal comfort indexes calculation. The obtained results of the analysis showed that the used numerical technique could accurately predict air flow and temperature distribution in natural ventilated building using solar chimney; the air temperature, air velocity and solar heat flux have a significant impact on thermal comfort; the temperature of 19°C with velocity of 0.15 m.s−1 gives the best effective draft temperature (EDT) satisfy ASHRAE (55-210) criteria that V = 0.35 m.s−1 and EDT range between −1.7 and 1.1.

Originality/value

In the present paper, air flow, temperature distribution and thermal comfort inside a room equipped with inclined solar chimney were numerically investigated and analyzed. The commercial CFD package (CFX 15) is used. Calculations are carried out in an empty room without any human or mechanical activity and the numerical results are compared with measurement points.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 May 2018

Ming Liu, Lei Tan, Yabin Liu, Yun Xu and Shuliang Cao

This paper aims to investigate the effect of three-dimensional (3D) inlet guide vanes (IGVs) on performance of a centrifugal pump.

Abstract

Purpose

This paper aims to investigate the effect of three-dimensional (3D) inlet guide vanes (IGVs) on performance of a centrifugal pump.

Design/methodology/approach

A design method for 3D IGVs is proposed based on the controllable velocity moment, which is determined by a fourth-order dimensionless function. Numerical simulation of the centrifugal pump with IGVs is carried out by solving the Reynolds-averaged Navier–Stokes equations. The method of frozen rotor is applied to couple the stationary and rotational domain.

Findings

The efficiency of pump with 3D IGVs is higher than that with 2D IGVs for most prewhirl angles, which validate the advancement of 3D IGVs on prewhirl regulation. The effect of prewhirl regulation at small flow rate is more significant than that at large flow rate.

Originality/value

A prediction model of velocity moment based on the Oseen vortex is proposed to describe the flow pattern downstream the IGVs.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2021

Jianghong Zhao and Xin Li

Vortex grippers use tangential nozzles to form vortex flow and are able to grip a workpiece without any physical contact, thus avoiding any unintentional workpiece damage. This…

Abstract

Purpose

Vortex grippers use tangential nozzles to form vortex flow and are able to grip a workpiece without any physical contact, thus avoiding any unintentional workpiece damage. This study aims to use experimental and theoretical methods to investigate the effects of nozzle diameter on the performance.

Design/methodology/approach

First, various suction force-distance curves were developed to analyze the effects of nozzle diameter on the maximum suction force. This study determines the tangential velocity distribution on the workpiece surface by substituting the experimental pressure distribution data into simplified Navier-Stokes equations and then used these equations to analyze the effects on the flow field. Subsequent theoretical analysis of the distribution of pressure and circumferential velocity further validated the experimental results. Next, by rearranging these relationships, the study considered the effects of nozzle diameter on the inherent vortex gripper characteristics. In addition, this study developed various suction force-energy consumption curves to analyze the effects of nozzle diameter.

Findings

The results of this study indicated that the vortex gripper’s circumferential velocity and maximum suction force decrease with increasing nozzle diameter. Nozzle diameter did not significantly affect the inherent frequency of the vortex gripper-workpiece inertial system or the corresponding suspension stability of the workpiece. However, an increase in nozzle diameter did effectively increase the vortex gripper’s suspension region. Finally, as the nozzle diameter increased, the energy required to achieve the same maximum suction force decreased.

Originality/value

This study’s findings can enable optimization of nozzle design in emerging vortex gripper designs and facilitate informed selection among existing vortex grippers.

Details

Assembly Automation, vol. 41 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 May 1930

J.W. Maccoll

THIS paper aims at giving the most important results of modern German research upon the motion of incompressible fluids. Before dealing with the latest developments, I have…

Abstract

THIS paper aims at giving the most important results of modern German research upon the motion of incompressible fluids. Before dealing with the latest developments, I have thought it advisable to give a short account of the older researches upon which the present work is based. It is hoped that this résumé will give a fairly complete survey of the methods that have led to the present insight into the hydrodynamical mechanism.

Details

Aircraft Engineering and Aerospace Technology, vol. 2 no. 5
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 11000