Search results

1 – 1 of 1
Article
Publication date: 11 January 2021

Yerzhigit Bapin and Vasilios Zarikas

This study aims to introduce a methodology for optimal allocation of spinning reserves taking into account load, wind and solar generation by application of the univariate and…

Abstract

Purpose

This study aims to introduce a methodology for optimal allocation of spinning reserves taking into account load, wind and solar generation by application of the univariate and bivariate parametric models, conventional intra and inter-zonal spinning reserve capacity as well as demand response through utilization of capacity outage probability tables and the equivalent assisting unit approach.

Design/methodology/approach

The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern probability density function (PDF). The study also uses the Bayesian network (BN) algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours.

Findings

The results show that the utilization of bivariate wind prediction model along with reserve allocation adjustment algorithm improve reliability of the power grid by 2.66% and reduce the total system operating costs by 1.12%.

Originality/value

The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern PDF. The study also uses the BN algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours.

1 – 1 of 1