Search results

1 – 5 of 5
Article
Publication date: 5 January 2015

F. Aziz, Z. Ahmad, S.M. Abdullah, K. Sulaiman and M.H. Sayyad

The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H…

Abstract

Purpose

The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO). The use of soluble vanadyl phthalocyanine derivative makes it very attractive for photovoltaic applications due to its tunable properties and high solubility.

Design/methodology/approach

A photoactive layer of VOPcPhO has been sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes to produce a ITO/PEDOT:PSS/VOPcPhO/Al photovoltaic device. The VOPcPhO thin film is deposited by a simple spin coating technique. To obtain the optimal thickness for the solar cell device, different thicknesses of the photoactive layer, achieved by manipulating the spin rate, have been investigated.

Findings

The device exhibited photovoltaic effect with the values of Jsc, Voc and FF equal to 5.26 × 10-6 A/cm2, 0.621 V and 0.33, respectively. The electronic parameters of the cell have been obtained from the analysis of current-voltage characteristics measured in dark. The values of ideality factor and barrier height were found to be 2.69 and 0.416 eV, respectively. The optical examination showed that the material is sensitive to light in the UV region between 270 nm and 410 nm, as well as in the visible spectrum within the range of 630 nm and 750 nm.

Research limitations/implications

The solar cell based on a single layer of vanadyl phthalocyanine derivative results in low efficiency, which can be enhanced by introducing a variety of donor materials to form bulk heterojunction solar cells.

Practical implications

The spin coating technique provides a simple, less expensive and effective approach for preparing thin films.

Originality/value

A novel thin-film, single-junction organic solar cell, fabricated by using VOPcPhO, has been investigated for the first time ever. The vanadyl phthalocyanine derivative together with a donor material will have potential application for improved efficiency of the solar cells.

Article
Publication date: 5 May 2015

F. Aziz, K. Sulaiman, Wissam Khayer Al-Rawi, Z. Ahmad, M.H. Sayyad, Kh. S. Karimov, L.L. Wei and M. Tahir

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl

Abstract

Purpose

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl phthalocyanine derivative. The correlation between the physical characteristics of the active layers, comprising vanadyl 2,9,16, 23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO) and PCBM, and the electrical properties of metal/organic/metal devices have been studied. The use of soluble vanadyl phthalocyanine derivative makes it very attractive for a variety of applications due to its tunable properties and high solubility.

Design/methodology/approach

The sandwich type structures Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al were fabricated by spin casting the active organic layers between the top and bottom (aluminum) electrodes. The stand-alone (VOPcPhO) and composite (VOPcPhO:PCBM) thin films were characterized by X-ray diffraction, atomic force microscopy, UV/Vis and Raman spectroscopy. The electronic properties of the metal/organic/metal devices were studied using current-voltage (I-V) characteristics in dark at room temperature.

Findings

The values of barrier height for Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al devices were obtained from the forward bias I-V curves and were found to be 0.7 eV and 0.62 eV, respectively. The present study indicates that the device employing VOPcPhO:PCBM composite film as the active layer, with better structural and morphological characteristics, results in reduced barrier height at the metal-organic film interface as compared to the one fabricated with the stand-alone film.

Research limitations/implications

It is shown that doping VOPcPhO with PCBM improves the crystallinity, morphology and junction properties.

Practical implications

The spin coating technique provides a simple, less expensive and effective approach for preparing thin films. The soluble VOPcPhO is conveniently dissolved in a number of organic solvents.

Originality/value

The physical properties of the VOPcPhO:PCBM composite thin film and the electrical properties of the composite thin-film-based metal/organic/metal devices have not been reported in the literature, as far as our knowledge is concerned.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 1995

D.M. Tench, D.P. Anderson, P. Jambazian, P. Kim, J. White, D. Hillman, D. Frommelt, G.K. Lucey, T. Gher and B. Piekarski

The recently developed Reduced Oxide Soldering Activation (ROSA™) method is shown to be compatible with long‐term use with mass soldering processes. Prototype regeneration cells…

Abstract

The recently developed Reduced Oxide Soldering Activation (ROSA™) method is shown to be compatible with long‐term use with mass soldering processes. Prototype regeneration cells operated for as long as six months with minimal maintenance retained their effectiveness for providing short wetting times under a variety of perturbations. The operating window for the process is wide and component degradation caused by exposure to the fully charged solution is minimal. The ROSA treatment provides soldering performance comparable to that attainable with a fully activated rosin flux and offers the promise of providing low soldering defect rates without the use of CFC solvents.

Details

Soldering & Surface Mount Technology, vol. 7 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 January 1962

W.D. Jarvis

The corrosive attack of boiler surfaces exposed to flue gases has occurred from time to time in plant operated by the Central Electricity Generating Board. The availability lost…

Abstract

The corrosive attack of boiler surfaces exposed to flue gases has occurred from time to time in plant operated by the Central Electricity Generating Board. The availability lost in this way is little more than 1% of the total boiler capacity installed, but when the load demand is met mainly by unit generators with a steaming capacity over 100 MW, the enforced shut‐down of one of these units would be a more serious loss. This article describes the ways in which various parts of boilers are attacked, the factors affecting corrosion in these cases and the chemical basis of the processes. Investigations are being carried out, and several preventive methods are mentioned.

Details

Anti-Corrosion Methods and Materials, vol. 9 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 20 September 2018

Khushdeep Goyal, Hazoor Singh and Rakesh Bhatia

Molten sulphate-vanadate induced hot corrosion is the main reason of failure of boiler tubes used at high temperatures in thermal power plants. The hot corrosion can be…

200

Abstract

Purpose

Molten sulphate-vanadate induced hot corrosion is the main reason of failure of boiler tubes used at high temperatures in thermal power plants. The hot corrosion can be encountered by applying thermal spray coatings on the alloy steels. In this perspective, this paper aims to attempt to investigate the effect of carbon nanotubes reinforcement on Cr2O3 composite coatings on hot corrosion behaviour of ASTM-SA213-T22 steel in a corrosive environment of Na2SO4 – 60%V2O5 at 900°C for 50 cycles.

Design/methodology/approach

The coatings have been deposited with high velocity oxy fuel process. The samples were exposed to hot corrosion in a Silicon tube furnace at 900°C for 50 cycles. The kinetics of corrosion behaviour were analysed by the weight gain measurements after each cycle. Corrosion products were analysed with X-ray diffraction, scanning electron microscopy, energy dispersive and cross-sectional analysis techniques.

Findings

During investigations, the carbon nanotubes (CNT) reinforced Cr2O3 composite coatings on T22 steel were found to provide better corrosion resistance in the molten salt environment at 900°C. The coatings showed lower weight gain along with formation of protective oxide scales during the experiment. Improvement in protection against hot corrosion was observed with increase in CNT content in the coating matrix.

Research limitations/implications

The addition of CNT has resulted in reduction in porosity by filling the voids in chromium oxide coating, with interlocking of particle and has blocked the penetration of corroding species to enhance the corrosion resistance of the composite coatings. The corrosion rate was found to be decreasing with increase in CNT content in coating matrix.

Originality/value

It must be mentioned here that high temperature corrosion behaviour of thermally sprayed CNT-Cr2O3 composite coatings has never been studied, and it is not available in the literature. Hence, present investigation can provide valuable information for application of CNT-reinforced coatings in high temperature fuel combustion environments.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 5 of 5