Search results

1 – 10 of over 4000
Article
Publication date: 3 July 2009

Ahmed Attar, Mohamed Amine Boudjakdji, Nadia Bhuiyan, Khaled Grine, Said Kenai and Ali Aoubed

The purpose of this paper is to show how the time frame for the execution of a construction project in Algeria is rarely respected because of organizational problems and…

Abstract

Purpose

The purpose of this paper is to show how the time frame for the execution of a construction project in Algeria is rarely respected because of organizational problems and uncertainties encountered while the execution is underway.

Design/methodology/approach

A case study on the construction of a metro station is used as a pilot project to show the effectiveness of replacing traditional construction processes by more innovative procedures. Concurrent engineering (CE) is applied to optimize the execution time of the underground structure. A numerical simulation is integrated into the construction process in order to update design parameters with real site conditions observed during the construction process.

Findings

The results show that the implementation of CE is efficient in reducing the completion time, with an 18 per cent reduction observed in this case study. A cost reduction of 20 per cent on the steel frame support and a total cost reduction of 3 per cent were obtained.

Research limitations/implications

The study demonstrates that the application of CE methods can be quite valuable in large, complex construction projects. Vulgarizing it as “the solution” to adjust time frame delay, control quality and cost, might be an issue for local construction enterprises in Algeria.

Originality/value

Using the concept of CE by overlapping different activities involved in a construction project and making use of simulation tools in the process at different stages of the execution have resulted in modifying the excavation method and hence reducing the completion times.

Details

Engineering, Construction and Architectural Management, vol. 16 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 September 2020

Shang Zhang, Riza Yosia Sunindijo, Martin Loosemore, Shejiang Wang, Yajun Gu and Hongfei Li

The image of the construction industry in China, as in many other countries, is tarnished by its poor safety record. With the rapid development of subway systems in Chinese urban…

1041

Abstract

Purpose

The image of the construction industry in China, as in many other countries, is tarnished by its poor safety record. With the rapid development of subway systems in Chinese urban areas, construction workers are being exposed to new risks which are poorly understood and managed. Subway construction projects are large scale and scattered over many construction sites, and involve numerous stakeholders and sophisticated technologies in challenging underground environments. Accident rates are high and have significant economic and social consequences for the firms and people involved. Addressing the gap in research about the safety risk in these projects, the purpose of this paper is to advance understanding of the factors influencing the safety of Chinese subway construction projects with the overall objective of reducing accident rates.

Design/methodology/approach

A survey was conducted with 399 subway construction professionals across five stakeholder groups. Follow-up interviews were also conducted with five experienced experts in safety management on subway projects to validate the results.

Findings

It was found that the eight most critical factors perceived by stakeholders to influence safety risks on Chinese subway projects are: project management team; contractor-related factors; site underground environment; safety protection during the use of machines; safety management investment; site construction monitoring and measurement; hazard identification and communication; and use of machines in all stages. This indicates that in allocating limited project resources to improve the safety of subway projects, managers should focus on: developing safety knowledge and positive attitudes in leadership teams; formulating effective risk management systems to identify, assess, mitigate, measure and monitor safety risks on site; improving communications with stakeholders about these risks and effectively managing plant, equipment and machinery.

Originality/value

This research contributes a new multi-stakeholder perspective to the lack of safety research in Chinese subway construction projects. The research findings provide important new insights for policymakers and managers in improving safety outcomes on these major projects, producing potentially significant social and economic benefits for society and the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 August 2020

Hui Lu, Junxiong Qi, Jue Li, Yong Xie, Gangyan Xu and Hongwei Wang

In shield tunneling projects, human, shield machine and underground environment are tightly coupled and interacted. Accidents often occur under dysfunctional interactions among…

Abstract

Purpose

In shield tunneling projects, human, shield machine and underground environment are tightly coupled and interacted. Accidents often occur under dysfunctional interactions among them. Therefore, this paper aims to develop a multi-agent based safety computational experiment system (SCES) and use it to identify the main influential factors of various aspects of human, shield machine and underground environment.

Design/methodology/approach

The methods mainly comprised computational experiments and multi-agent technologies. First, a safety model with human-machine-environment interaction consideration is developed through the multi-agent technologies. On this basis, SCES is implemented. Then computational experiments are designed and performed on SCES for analyzing safety performance and identifying the main influential factors.

Findings

The main influential factors of two common accidents are identified. For surface settlement, the main influential factors are ranked as experience, soil density, soil cohesion, screw conveyor speed and thrust force in descending order of influence levels; for mud cake on cutter, they are ranked as soil cohesion, experience, cutter speed and screw conveyor speed. These results are consistent with intuition and previous studies and demonstrate the applicability of SCES.

Practical implications

The proposed SCES provides comprehensive risk factor identification for shield tunneling projects and also insights to support informed decisions for safety management.

Originality/value

A safety model with human-machine-environment interaction consideration is developed and computational experiments are used to analyze the safety performance. The novel method and model could contribute to system-based safety research and promote systematic understanding of the safety performance of shield tunneling projects.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 June 2007

Patrick T.I. Lam, Francis K.W. Wong and Franky W.H. Wong

Buildability is concerned with enhancing building designs to achieve ease of construction. Adapting from the Buildable Design Appraisal System in Singapore, a tailored‐made…

1362

Abstract

Purpose

Buildability is concerned with enhancing building designs to achieve ease of construction. Adapting from the Buildable Design Appraisal System in Singapore, a tailored‐made Buildability Assessment Model (BAM), which scores buildability of building designs, has been devised for use in Hong Kong. In developing the BAM, local factors and terrain characteristics, e.g. highly constrained and sloping site conditions, which are common features besetting the industry, are particularly considered. The purpose of this paper, therefore, is to report on the effects of building sites on buildability.

Design/methodology/approach

A questionnaire survey with 39 valid responses was administered on construction practitioners, aimed at understanding the relative buildability importance of a number of building features and site‐specific factors in Hong Kong. Analysis was carried out using the relative importance index method.

Findings

It is found that the most important buildability considerations for building features and site‐specific factors are “simplicity” and “allowing working space for safe construction and minimising water ingress and geotechnical difficulties”, respectively.

Research limitations/implications

The small sample size, though statistically significant, can be increased in further studies of similar type, to enhance the representativeness of the rankings.

Originality/value

The survey findings are valuable in that they offer a practical reference for design professionals, by scoring their designs, to comprehend the degree to which various building features and site‐specific factors impact on the ease of constructing their designs.

Details

Journal of Engineering, Design and Technology, vol. 5 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 21 May 2018

Jue Li, Minghui Yu and Hongwei Wang

On shield tunnel construction (STC) site, human error is widely recognized as essential to accident. It is necessary to explain which factors lead to human error and how these…

1911

Abstract

Purpose

On shield tunnel construction (STC) site, human error is widely recognized as essential to accident. It is necessary to explain which factors lead to human error and how these factors can influence human performance. Human reliability analysis supports such necessity through modeling the performance shaping factors (PSFs). The purpose of this paper is to establish and validate a PSF taxonomy for the STC context.

Design/methodology/approach

The approach taken in this study mainly consists of three steps. First, a description of the STC context is proposed through the analysis of the STC context. Second, the literature which stretch across the PSF methodologies, cognitive psychology and human factors of STC and other construction industries are reviewed to develop an initial set of PSFs. Finally, a final PSF set is modified and validated based on STC task analysis and STC accidents cases.

Findings

The PSF taxonomy constituted by 4 main components, 4 hierarchies and 85 PSFs is established for human behavior modeling and simulation under the STC context. Furthermore, by comparing and evaluating the performance of STC PSF and existing PSF studies, the proposed PSF taxonomy meets the requirement for qualitative and quantitative analysis.

Practical implications

The PSF taxonomy can provide a basis and support for human behavior modeling and simulation under the STC context. Integrating PSFs into a behavior simulation model provides a more realistic and integrated assessment of human error by manifesting the influence of each PSFs on the cognitive processes. The simulation results can suggest concrete points for the improvement of STC safety management.

Originality/value

This paper develops a taxonomy of PSFs that addresses the various unique influences of the STC context on human behaviors. The harsh underground working conditions and diverse resources of system information are identified as key characteristics of the STC context. Furthermore, the PSF taxonomy can be integrated into a human cognitive behavior model to predict the worker’s behavior on STC site in future work.

Details

Engineering, Construction and Architectural Management, vol. 25 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 September 2023

Minghao Wang, Ming Cong, Dong Liu, Yu Du, Xiaojing Tian and Bing Li

The purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic…

Abstract

Purpose

The purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic (RTK) data in underground spatial features and gravity fluctuations environment. This method improves the mapping accuracy in two types of underground space: multi-layer space and large-scale scenarios.

Design/methodology/approach

An IMU–Laser–RTK fusion mapping algorithm based on Iterative Kalman Filter was proposed, and the observation equation and Jacobian matrix were derived. Aiming at the problem of inaccurate gravity estimation, the optimization of gravity is transformed into the optimization of SO(3), which avoids the problem of gravity over-parameterization.

Findings

Compared with the optimization method, the computational cost is reduced. Without relying on the wheel speed odometer, the robot synchronization localization and 3D environment modeling for multi-layer space are realized. The performance of the proposed algorithm is tested and compared in two types of underground space, and the robustness and accuracy in multi-layer space and large-scale scenarios are verified. The results show that the root mean square error of the proposed algorithm is 0.061 m, which achieves higher accuracy than other algorithms.

Originality/value

Based on the problem of large loop and low feature scale, this algorithm can better complete the map loop and self-positioning, and its root mean square error is more than double compared with other methods. The method proposed in this paper can better complete the autonomous positioning of the robot in the underground space with hierarchical feature degradation, and at the same time, an accurate 3D map can be constructed for subsequent research.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 June 2022

María Jesús Rosado García and Daniel Crespo Delgado

This work aims to demonstrate the feasibility of fully preserving the historical heritage at the same time reordering the cities and their traffic.

Abstract

Purpose

This work aims to demonstrate the feasibility of fully preserving the historical heritage at the same time reordering the cities and their traffic.

Design/methodology/approach

This paper describes the sustainable solution designed for the landscape change required and to maintain the bridge integrity by excavating under the pier with the maintenance of traffic during its execution.

Findings

It is concluded that the elimination of urban motorways on the surface often leads to the excavation of tunnels under the existing buildings, with little coverage in most of them. This complicates the implementation of burials in cities with an important historical heritage, which must be given conservation priority in the choice of technical solutions.

Originality/value

The Segovia Bridge over the Manzanares River, the oldest bridge in Madrid, was built in the 16th century. With the burial of the M-30 motorway, it has been necessary to build a tunnel immediately under one of the bridge piers, practically without lining between the foundations and the upper slab of the tunnel.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 6 May 2020

Zhang Fengjun, Kong Cui, Sun Xianyang, Li Xuan, Liu Jin and Chen Qianbao

A novel ternary flocculant was prepared by a simple compounding method to achieve efficient and rapid mud-water separation. This paper aims to discuss the possible mud-water…

Abstract

Purpose

A novel ternary flocculant was prepared by a simple compounding method to achieve efficient and rapid mud-water separation. This paper aims to discuss the possible mud-water separation mechanism.

Design/methodology/approach

This experimental study aims to investigate the effects of different types of flocculants on the separation of waste mud water and the degradation of flocculants in the supernatant. The flocculating component, the ratio of the flocculating accelerator to the flocculant and the addition amount of the novel ternary flocculant were optimized.

Findings

The experimental results show that the composition of the new ternary flocculant is cationic polyacrylamide (CP-02), grafted starch (GS-501) and flocculation sedimentation accelerator, the best effect, the mass ratio is 1:0.5: 0.75. According to 0.25:1 (volume ratio), the new ternary flocculant is pre-configured into a solution with a concentration of 3 kg/m3 to achieve efficient and rapid mud-water separation.

Originality/value

The new ternary flocculant is used for the separation of mud and water in the underground continuous wall waste mud, improving the level of civilized construction.

Article
Publication date: 10 February 2021

Saeid Moharrami, Maedeh Taghaddos, SeyedReza RazaviAlavi and Simaan AbouRizk

Construction planning for microtunneling projects is a complex process due to the high level of uncertainties inherent in underground construction and the interdependent nature of…

Abstract

Purpose

Construction planning for microtunneling projects is a complex process due to the high level of uncertainties inherent in underground construction and the interdependent nature of decision variables. Simulation is a suitable decision-making tool to account for uncertainties and to model complex dependencies among decision variables. This paper aims to improve microtunneling construction planning by using simulation.

Design/methodology/approach

This study proposes a hybrid simulation approach that combines discrete event simulation (DES) with continuous simulation (CS) for microtunneling construction planning. In this approach, DES is used to model construction processes at the activity level and CS is used to model the continuous flow of soil material in the system.

Findings

To demonstrate the capability of the proposed approach in construction planning of microtunneling projects, different construction plan scenarios are compared in a microtunneling case study. The results of the case study show suitability of the hybrid DES-CS approach in simulating microtunneling construction processes and the practicality of the approach for identifying the most efficient construction plan.

Originality/value

This study proposes a new modeling approach for microtunneling construction processes using hybrid simulation and provides decision support at the construction planning stage of projects.

Details

Construction Innovation , vol. 21 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 4000