Search results

1 – 10 of over 12000
Article
Publication date: 3 August 2020

Hui Lu, Junxiong Qi, Jue Li, Yong Xie, Gangyan Xu and Hongwei Wang

In shield tunneling projects, human, shield machine and underground environment are tightly coupled and interacted. Accidents often occur under dysfunctional interactions among…

Abstract

Purpose

In shield tunneling projects, human, shield machine and underground environment are tightly coupled and interacted. Accidents often occur under dysfunctional interactions among them. Therefore, this paper aims to develop a multi-agent based safety computational experiment system (SCES) and use it to identify the main influential factors of various aspects of human, shield machine and underground environment.

Design/methodology/approach

The methods mainly comprised computational experiments and multi-agent technologies. First, a safety model with human-machine-environment interaction consideration is developed through the multi-agent technologies. On this basis, SCES is implemented. Then computational experiments are designed and performed on SCES for analyzing safety performance and identifying the main influential factors.

Findings

The main influential factors of two common accidents are identified. For surface settlement, the main influential factors are ranked as experience, soil density, soil cohesion, screw conveyor speed and thrust force in descending order of influence levels; for mud cake on cutter, they are ranked as soil cohesion, experience, cutter speed and screw conveyor speed. These results are consistent with intuition and previous studies and demonstrate the applicability of SCES.

Practical implications

The proposed SCES provides comprehensive risk factor identification for shield tunneling projects and also insights to support informed decisions for safety management.

Originality/value

A safety model with human-machine-environment interaction consideration is developed and computational experiments are used to analyze the safety performance. The novel method and model could contribute to system-based safety research and promote systematic understanding of the safety performance of shield tunneling projects.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 March 2021

Iman Mazinani, Mohammad Mohsen Sarafraz, Zubaidah Ismail, Ahmad Mustafa Hashim, Mohammad Reza Safaei and Somchai Wongwises

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges…

Abstract

Purpose

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges.

Design/methodology/approach

Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results.

Findings

The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research.

Originality/value

Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 20 August 2018

Bartosz Sawik

In this chapter, four bi-objective vehicle routing problems are considered. Weighted-sum approach optimization models are formulated with the use of mixed-integer programming. In…

Abstract

In this chapter, four bi-objective vehicle routing problems are considered. Weighted-sum approach optimization models are formulated with the use of mixed-integer programming. In presented optimization models, maximization of capacity of truck versus minimization of utilization of fuel, carbon emission, and production of noise are taken into account. The problems deal with real data for green logistics for routes crossing the Western Pyrenees in Navarre, Basque Country, and La Rioja, Spain.

Heterogeneous fleet of trucks is considered. Different types of trucks have not only different capacities, but also require different amounts of fuel for operations. Consequently, the amount of carbon emission and noise vary as well. Modern logistic companies planning delivery routes must consider the trade-off between the financial and environmental aspects of transportation. Efficiency of delivery routes is impacted by truck size and the possibility of dividing long delivery routes into smaller ones. The results of computational experiments modeled after real data from a Spanish food distribution company are reported. Computational results based on formulated optimization models show some balance between fleet size, truck types, and utilization of fuel, carbon emission, and production of noise. As a result, the company could consider a mixture of trucks sizes and divided routes for smaller trucks. Analyses of obtained results could help logistics managers lead the initiative in environmental conservation by saving fuel and consequently minimizing pollution. The computational experiments were performed using the AMPL programming language and the CPLEX solver.

Article
Publication date: 5 August 2014

Kamran Munir, Saad Liaquat Kiani, Khawar Hasham, Richard McClatchey, Andrew Branson and Jetendr Shamdasani

The purpose of this paper is to provide an integrated analysis base to facilitate computational neuroscience experiments, following a user-led approach to provide access to the…

Abstract

Purpose

The purpose of this paper is to provide an integrated analysis base to facilitate computational neuroscience experiments, following a user-led approach to provide access to the integrated neuroscience data and to enable the analyses demanded by the biomedical research community.

Design/methodology/approach

The design and development of the N4U analysis base and related information services addresses the existing research and practical challenges by offering an integrated medical data analysis environment with the necessary building blocks for neuroscientists to optimally exploit neuroscience workflows, large image data sets and algorithms to conduct analyses.

Findings

The provision of an integrated e-science environment of computational neuroimaging can enhance the prospects, speed and utility of the data analysis process for neurodegenerative diseases.

Originality/value

The N4U analysis base enables conducting biomedical data analyses by indexing and interlinking the neuroimaging and clinical study data sets stored on the grid infrastructure, algorithms and scientific workflow definitions along with their associated provenance information.

Details

Journal of Systems and Information Technology, vol. 16 no. 3
Type: Research Article
ISSN: 1328-7265

Keywords

Article
Publication date: 8 January 2018

Jerzy Józefczyk and Mirosław Ławrynowicz

Rapid advancements in internet technology have made it possible to develop electronic commerce in general and internet shopping in particular. Easy access to a vast number of…

Abstract

Purpose

Rapid advancements in internet technology have made it possible to develop electronic commerce in general and internet shopping in particular. Easy access to a vast number of existing internet stores enables buyers to customize their shopping processes to minimize the total purchase cost. This paper aims to investigate a novel internet shopping problem, which consists of the diversification of a given list of products to buy among many stores and to use discounts offered by the stores.

Design/methodology/approach

The adequate discrete optimization problem referred to as internet shopping optimization problem with price sensitivity discounts (ISOPwD) is investigated, which turned out to be strongly nondeterministic polynomial (NS)-hard. Two heuristic solution algorithms have been derived using the tabu search (TS) and the simulated annealing (SA) metaheuristics for having a solution in a reasonable time. The algorithms have been assessed via computational experiments, and they have been compared with another algorithm known from the literature that has been elaborated for a simpler version of ISOPwD.

Findings

The conducted evaluation has shown the advantage of both heuristic algorithms on the algorithm known from the literature. Moreover, the TS-based algorithm outperformed the other one in terms of the total cost incurred by customers and the computational time.

Research limitations/implications

The special primary piecewise linear discounting function is only taken into account. Other possible discounts connected, for example, with bundles of products and (or) coupons are not considered.

Practical implications

The elaborated algorithms can be recommended for internet shopping providers who want to introduce the ability to search a cost-optimized set of products in their databases or for applications that combine offers from various online retailers, e.g. internet price comparison services and auction sites.

Originality/value

The novelty of considered ISOPwD, in comparison with similar problems discussed in the literature, deals with an arbitrary number of purchased products, the possibility to buy an identical product in different stores and the consideration of the weight, the amount and the availability of goods as parameters of ISOPwD.

Article
Publication date: 3 June 2019

Arif Abdullah, Mohd Fadzil Faisae Ab Rashid, S.G. Ponnambalam and Zakri Ghazalli

Environmental problems in manufacturing industries are a global issue owing to severe lack fossil resources. In assembly sequence planning (ASP), the research effort mainly aims…

Abstract

Purpose

Environmental problems in manufacturing industries are a global issue owing to severe lack fossil resources. In assembly sequence planning (ASP), the research effort mainly aims to improve profit and human-related factors, but it still lacks in the consideration of the environmental issue. This paper aims to present an energy-efficient model for the ASP problem.

Design/methodology/approach

The proposed model considered energy utilization during the assembly process, particularly idle energy utilization. The problem was then optimized using moth flame optimization (MFO) and compared with well-established algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). A computational test was conducted using five assembly problems ranging from 12 to 40 components.

Findings

The results of the computational experiments indicated that the proposed model was capable of generating an energy-efficient assembly sequence. At the same time, the results also showed that MFO consistently performed better in terms of the best and mean fitness, with acceptable computational time.

Originality/value

This paper proposed a new energy-efficient ASP model that can be a guideline to design assembly station. Furthermore, this is the first attempt to implement MFO for the ASP problem.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 May 2003

Wei‐Shing Chen and Chiuh‐Cheng Chyu

This paper considers the decision problem for a minimum setup strategy of a production system arising in the assembly of printed circuit boards of different types, using a…

Abstract

This paper considers the decision problem for a minimum setup strategy of a production system arising in the assembly of printed circuit boards of different types, using a placement machine with multi‐slot feeders. We formulate the problem as a binary linear programming model, and propose a heuristic procedure to find the solution that consists of a board‐assembly sequence, an associated component loading and unloading strategy and a feeder‐assignment plan within reasonable computational effort. Computational results from solving the simulated problem instances by using the heuristic method and the mathematical model are provided and compared. The proposed heuristic procedure can be incorporated into the PCB scheduling optimization software to decrease cycle times and increase overall assembly throughput in a high‐mix, low‐volume PCB manufacturing environment.

Details

Integrated Manufacturing Systems, vol. 14 no. 3
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 18 June 2021

Shuai Luo, Hongwei Liu and Ershi Qi

The purpose of this paper is to recognize and label the faults in wind turbines with a new density-based clustering algorithm, named contour density scanning clustering (CDSC…

Abstract

Purpose

The purpose of this paper is to recognize and label the faults in wind turbines with a new density-based clustering algorithm, named contour density scanning clustering (CDSC) algorithm.

Design/methodology/approach

The algorithm includes four components: (1) computation of neighborhood density, (2) selection of core and noise data, (3) scanning core data and (4) updating clusters. The proposed algorithm considers the relationship between neighborhood data points according to a contour density scanning strategy.

Findings

The first experiment is conducted with artificial data to validate that the proposed CDSC algorithm is suitable for handling data points with arbitrary shapes. The second experiment with industrial gearbox vibration data is carried out to demonstrate that the time complexity and accuracy of the proposed CDSC algorithm in comparison with other conventional clustering algorithms, including k-means, density-based spatial clustering of applications with noise, density peaking clustering, neighborhood grid clustering, support vector clustering, random forest, core fusion-based density peak clustering, AdaBoost and extreme gradient boosting. The third experiment is conducted with an industrial bearing vibration data set to highlight that the CDSC algorithm can automatically track the emerging fault patterns of bearing in wind turbines over time.

Originality/value

Data points with different densities are clustered using three strategies: direct density reachability, density reachability and density connectivity. A contours density scanning strategy is proposed to determine whether the data points with the same density belong to one cluster. The proposed CDSC algorithm achieves automatically clustering, which means that the trends of the fault pattern could be tracked.

Details

Data Technologies and Applications, vol. 55 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 10 June 2019

Himanshu Rathore, Shirsendu Nandi, Peeyush Pandey and Surya Prakash Singh

The purpose of this paper is to examine the efficacy of diversification-based learning (DBL) in expediting the performance of simulated annealing (SA) in hub location problems.

Abstract

Purpose

The purpose of this paper is to examine the efficacy of diversification-based learning (DBL) in expediting the performance of simulated annealing (SA) in hub location problems.

Design/methodology/approach

This study proposes a novel diversification-based learning simulated annealing (DBLSA) algorithm for solving p-hub median problems. It is executed on MATLAB 11.0. Experiments are conducted on CAB and AP data sets.

Findings

This study finds that in hub location models, DBLSA algorithm equipped with social learning operator outperforms the vanilla version of SA algorithm in terms of accuracy and convergence rates.

Practical implications

Hub location problems are relevant in aviation and telecommunication industry. This study proposes a novel application of a DBLSA algorithm to solve larger instances of hub location problems effectively in reasonable computational time.

Originality/value

To the best of the author’s knowledge, this is the first application of DBL in optimisation. By demonstrating its efficacy, this study steers research in the direction of learning mechanisms-based metaheuristic applications.

Details

Benchmarking: An International Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 20 April 2023

Mohd Fadzil Faisae Ab. Rashid and Ariff Nijay Ramli

This study aims to propose a new multiobjective optimization metaheuristic based on the tiki-taka algorithm (TTA). The proposed multiobjective TTA (MOTTA) was implemented for a…

Abstract

Purpose

This study aims to propose a new multiobjective optimization metaheuristic based on the tiki-taka algorithm (TTA). The proposed multiobjective TTA (MOTTA) was implemented for a simple assembly line balancing type E (SALB-E), which aimed to minimize the cycle time and workstation number simultaneously.

Design/methodology/approach

TTA is a new metaheuristic inspired by the tiki-taka playing style in a football match. The TTA is previously designed for a single-objective optimization, but this study extends TTA into a multiobjective optimization. The MOTTA mimics the short passing and player movement in tiki-taka to control the game. The algorithm also utilizes unsuccessful ball pass and multiple key players to enhance the exploration. MOTTA was tested against popular CEC09 benchmark functions.

Findings

The computational experiments indicated that MOTTA had better results in 82% of the cases from the CEC09 benchmark functions. In addition, MOTTA successfully found 83.3% of the Pareto optimal solution in the SALB-E optimization and showed tremendous performance in the spread and distribution indicators, which were associated with the multiple key players in the algorithm.

Originality/value

MOTTA exploits the information from all players to move to a new position. The algorithm makes all solution candidates have contributions to the algorithm convergence.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 12000