Search results

1 – 10 of over 2000
To view the access options for this content please click here
Article
Publication date: 1 December 1955

This book, sponsored by the Taft Fund of the University of Cincinnati, is not a text‐book of Hydrodynamics in the accepted sense: it is not a book that a university…

Abstract

This book, sponsored by the Taft Fund of the University of Cincinnati, is not a text‐book of Hydrodynamics in the accepted sense: it is not a book that a university student would use for examination purposes.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 12
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 3 December 2018

Kanwal Jit Singh, Inderpreet Singh Ahuja and Jatinder Kapoor

This review paper reveals the literature on ultrasonic, chemical-assisted ultrasonic and rotary ultrasonic machining (USM) of glass material. The purpose of this review…

Abstract

Purpose

This review paper reveals the literature on ultrasonic, chemical-assisted ultrasonic and rotary ultrasonic machining (USM) of glass material. The purpose of this review paper is to understand and describe the working principle, mechanism of material removal, experimental investigation, applications and influence of input parameters on machining characteristics. The literature reveals that the ultrasonic machines have been generally preferred for the glass and brittle work materials. Some other non-traditional machining processes may thermally damage the work surface. Through these USM, neither thermal effects nor residual stresses have been generated on the machined surface.

Design/methodology/approach

Various input parameters have the significant role in machine performance characteristics. For the optimization of output response, several input parameters have been critically investigated by the various researcher.

Findings

Some advance types of glasses such as polycarbonate bulletproof glass, acrylic heat-resistant glass and glass-clad polycarbonate bulletproof glass still need some further investigation because these materials have vast applications in automobile, aerospace and space industries.

Originality/value

Review paper will be beneficial for industrial application and the various young researcher. Paper reveals the detail literature review on traditional ultrasonic, chemical assisted ultrasonic and rotary USM of glass and glass composite materials.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 1 August 1997

Frank Mellor

The improvements in quality of advanced aerospace steels have brought new challenges for the materials testing and inspection teams. Looks at the advances of this type of…

Downloads
513

Abstract

The improvements in quality of advanced aerospace steels have brought new challenges for the materials testing and inspection teams. Looks at the advances of this type of testing at British Steel Engineering Steels. Details non‐destructive testing of aerospace steels and the ultrasonic immersion tank. Finally looks at Engineering Steels’ recent investments in automation.

Details

Aircraft Engineering and Aerospace Technology, vol. 69 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 19 January 2010

Yanzhe Yang, G.D. Janaki Ram and Brent E. Stucker

Recently, a number of research projects have been focused on an emerging additive manufacturing process, termed ultrasonic consolidation (UC). The purpose of this paper is…

Abstract

Purpose

Recently, a number of research projects have been focused on an emerging additive manufacturing process, termed ultrasonic consolidation (UC). The purpose of this paper is to present an analytical energy model aimed at investigating the effects of process parameters on bond formation in UC.

Design/methodology/approach

In the model, two factors are defined, energy input to the workpiece within a single cycle of ultrasonic vibration (E0) and total energy input to the workpiece (Et), to evaluate to the magnitude of transmitted energy into the workpiece during UC.

Findings

It is found that linear weld density, E0 and Et are affected by process parameters in similar manners.

Research limitations/implications

The current model is developed based on several simplifying assumptions, and energy dissipation and bond degradation during UC are not considered in the model.

Originality/value

The current model gives a useful understanding of the effects of process parameter on the bond formation in UC from an energy point of view.

Details

Rapid Prototyping Journal, vol. 16 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 20 June 2016

Chiew Loon Goh, Ruzairi Abdul Rahim and Mohd Hafiz Fazalul Rahiman

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on…

Downloads
432

Abstract

Purpose

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively and non-intrusively visualizing and monitoring gas-liquid multi-phase flow in process plants in making sure that the industrial system has high quality control. Process tomography is a developing measurement technology for industrial flow visualization.

Design/methodology/approach

A review of types of tomographic systems that have been widely researched especially in the application of gas-liquid flow within the past 10 years was conducted. The sensor system operating fundamentals and assessment of each tomography technology are discussed and explained in detail.

Findings

Potential future research on gas-liquid flow in a conducting vessel using ultrasonic tomography sensor system is addressed.

Originality/value

The authors would like to undertake that the above-mentioned manuscript is original, has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere and that my Institute’s Universiti Teknologi Malaysia representative is fully aware of this submission.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 27 April 2010

J.O. Obielodan, A. Ceylan, L.E. Murr and B.E. Stucker

The increasing interest in engineering structures made from multiple materials has led to corresponding interest in technologies, which can fabricate multi‐material parts…

Downloads
2785

Abstract

Purpose

The increasing interest in engineering structures made from multiple materials has led to corresponding interest in technologies, which can fabricate multi‐material parts. The purpose of this paper is to further explore of the multi‐material fabrication capabilities of ultrasonic consolidation (UC).

Design/methodology/approach

Various combinations of materials including titanium, silver, tantalum, aluminum, molybdenum, stainless steel, nickel, copper, and MetPreg® were ultrasonically consolidated. Some of the materials were found to be effective as an intermediate layer between difficult to join materials. Elemental boron particles were added in situ between selected materials to modify the bonding characteristics. Microstructures of deposits were studied to evaluate bond quality.

Findings

Results show evidence of good bonding between many combinations of materials, thus illustrating increasing potential for multi‐material fabrication using UC.

Originality/value

Multi‐material fabrication capabilities using UC and other additive manufacturing processes is a critical step towards the realization of engineering designs which make use of functional material combinations and optimization.

Details

Rapid Prototyping Journal, vol. 16 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 1 February 1989

E. Goold

The potentially highly automated process of surface mounting electronic components directly onto a substrate or printed circuit board possesses a very weak link. Component…

Abstract

The potentially highly automated process of surface mounting electronic components directly onto a substrate or printed circuit board possesses a very weak link. Component movement subsequent to placement and before or during solder reflow leads to defect conditions such as tombstoning or rotational misalignment. This work investigates the feasibility of replacing this ‘weak’ assembly step(s) with ultrasonics. The selection and modification of suitable ultrasonic equipment is described as in the bonding of chip components onto PCBs. Reliability analysis of the resultant bonds along with bond quality in terms of shear strength and appearance under scanning electron microscope and optical microscope is studied. The results show that, with certain preferred directions of ultrasonic weld, weld preload and weld time bond strengths obtained compare very favourably with those achieved with the present surface mount technology reflow process, hence establishing the feasibility of ultrasonics for this application.

Details

Circuit World, vol. 15 no. 3
Type: Research Article
ISSN: 0305-6120

To view the access options for this content please click here
Article
Publication date: 18 September 2017

Kanwal Jeet Singh, Inderpreet Singh Ahuja and Jathinder Kapoor

The purpose of this paper, an original research paper, is to study the optimization of material removal rate (MRR) in ultrasonic machining of polycarbonate bulletproof…

Downloads
204

Abstract

Purpose

The purpose of this paper, an original research paper, is to study the optimization of material removal rate (MRR) in ultrasonic machining of polycarbonate bulletproof glass and acrylic heat-resistant glass. The machining of these materials is a very tough job. There are so many constraints which need to be taken into account while machining, but without proper knowledge of material properties and machining parameters, machining is not possible. This paper gives basic knowledge about polycarbonate bulletproof and acrylic heat-resistant glass and provides ways as to how these types of materials are processed or machined.

Design/methodology/approach

The Taguchi method was utilized to optimize the ultrasonic machining parameters for drilling these advanced materials. The relationship between MRR and other controllable process parameters such as concentration of slurry, type of abrasive, abrasive grit size, power rating, concentration of HF acid and type of tool material has been analyzed by using the Taguchi approach.

Findings

Through the Taguchi analysis, it is concluded that types of abrasive and HF acid concentrations have a significant role to play in MRR for both materials; in which, type of abrasive have 72.91 and 72.96 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. Similarly, HF acid concentration has 14.70 and 14.65 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. The MRR was improved by 34.44 percent in polycarbonate bulletproof glass and 29.25 percent in acrylic heat-resistant glass.

Originality/value

After experimental investigation, the results of the Taguchi modal are validated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 15 June 2010

James M. Gibert, Eric M. Austin and Georges Fadel

The purpose of this paper is to focus on the changing dynamics of the ultrasonic consolidation (UC) process due to changes in substrate geometry. Past research points to a…

Abstract

Purpose

The purpose of this paper is to focus on the changing dynamics of the ultrasonic consolidation (UC) process due to changes in substrate geometry. Past research points to a limiting height to width ranging from 0.7 to 1.2 on build features.

Design/methodology/approach

Resonances of a build feature due to a change in geometry are examined and then a simple non‐linear dynamic model of the UC process is constructed that examines how the geometry change may influence the overall dynamics of the process. This simple model is used to provide estimates of how substrate geometry affects the differential motion at the bonding interface and the amount of energy emitted by friction change due to build height. The trends of changes in natural frequency, differential motion, and frictional energy are compared to experimental limits on build height.

Findings

The paper shows that, at the nominal build, dimensions of the feature the excitation caused by the UC approach two resonances in the feature. In addition trends in regions of changes of differential motion, force of friction, and frictional energy follow the experimental limit on build height.

Originality/value

This paper explores several aspects of the UC process not currently found in the current literature: examining the modal properties of build features, and a lumped parameter dynamic model to account for the changes in of the substrate geometry.

Details

Rapid Prototyping Journal, vol. 16 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 19 January 2010

M. Kulakov and H.J. Rack

The purpose of this paper is to examine the formation of surface damage associated with the ultrasonic consolidation (UC) of single ply 150 μm thick 3003‐H18 foil to a…

Abstract

Purpose

The purpose of this paper is to examine the formation of surface damage associated with the ultrasonic consolidation (UC) of single ply 150 μm thick 3003‐H18 foil to a 3003‐18 build plate and the relationship between the development of this damage state with the linear weld density (LWD) achieved during consolidation.

Design/methodology/approach

The influence of the consolidation control variables on the area fraction of the sonotrode induced top foil surface damage is established through application of a full factorial three‐level design‐of‐experiment methodology, the control variables limits being fixed by the capability of the UC system.

Findings

Detailed analysis of the foil top surface structure after consolidation reveals the presence of two characteristic, damaged and undamaged, regions. The former corresponded to plastically deformed areas, these being formed as a result of interaction of the foil top surface with the sonotrode, while the latter corresponded to the original foil surface. Sonotrode normal load, vibrational amplitude and its rotational velocity are found to have an interdependent affect on the development of the sonotrode‐induced top surface damage. Top surface damage initiates upon impression of the sonotrode into the foil surface followed by the commencement of oscillatory and forward rotational motion of the sonotrode. Finally, evidence is presented that the degree of sonotrode induced top surface damage bears a direct relationship with the linear ultrasonic weld density developed at the foil‐build plate interface, increasing top surface damage being associated with increased LWD.

Originality/value

A linear relationship between the degree of bonding at the foil‐build plate interface and the plastically deformed area on the foil top surface is established, this correlation demonstrating that bond formation between foils during UC depends on effective frictional conditions at the sonotrode‐foil interface.

Details

Rapid Prototyping Journal, vol. 16 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000