Search results

1 – 10 of over 1000
Article
Publication date: 6 February 2009

Kyoo‐Seok Kim, Jae‐Pil Jung and Y. Norman Zhou

The aim of the paper is to study the feasibility of direct ultrasonic bonding between contact pad arrays on flexible printed circuit boards (FPCB) and rigid printed circuit boards…

Abstract

Purpose

The aim of the paper is to study the feasibility of direct ultrasonic bonding between contact pad arrays on flexible printed circuit boards (FPCB) and rigid printed circuit boards (RPCB) at ambient temperature.

Design/methodology/approach

Metallization layers on the RPCB comprised Sn on Cu while the pads on the FPCB consisted of Au/Ni/Cu. Prepared RPCB and FPCB were bonded by ultrasound at ambient temperature using an ultrasonic frequency of 20 kHz, a power of 1,400 W, and 0.62 MPa of bonding pressure. The bonded samples were cross‐sectioned and the joints and microstructures were observed by Field Emission Scanning Electron Microscopy (FE‐SEM) and Energy Dispersive Spectroscopy (EDS). The soundness of the joints was evaluated by pull testing.

Findings

Robust bonding between FPCB and RPCB was obtained by bonding for 1.0 and 1.5 s. This result has confirmed that direct room temperature ultrasonic bonding of Au and Sn is feasible. At a longer bonding time of 3.0 s, cracks and voids were found in the joints due to excessive ultrasonic energy. The IMC (intermetallic compound) between the Sn layer and pads of the RPCB was confirmed as Cu6Sn5. On the FPCB side, Cu6Sn5 and Ni3Sn4 were formed by contact with the facing Sn coating, and mechanically alloyed Cu0.81Ni0.19 was found within the pads. Meanwhile, the strength of bonded joints between FPCB and RPCB increased with bonding time up to 1.5 s and the maximum value reached 12.48 N. At 3.0 s bonding time, the strength decreased drastically, and showed 5.75 N. Footprints from the fracture surfaces showed that bonding started from the edges of the metal pads, and extended to the pad centers as ultrasonic bonding time was increased.

Originality/value

Direct ultrasonic bonding with transverse vibration at ambient temperature between the surface layers of the pads of FPCB and RPCB has been confirmed to be feasible.

Details

Soldering & Surface Mount Technology, vol. 21 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1987

S.T. Riches and G.L. White

GaAs electronic devices are becoming increasingly used in the microelectronics industry especially in solid state microwave, ultra high speed digital processing and optoelectronic…

Abstract

GaAs electronic devices are becoming increasingly used in the microelectronics industry especially in solid state microwave, ultra high speed digital processing and optoelectronic applications. However, in the manufacture of the GaAs devices, problems due to the inherent brittleness of the GaAs and batch to batch variability of the bond pad metallisation have commonly been experienced. This has resulted in some difficulties in wire bonding to GaAs devices with ultrasonic and thermocompression wire bonding techniques. This paper describes a programme undertaken to investigate Au wire bonding techniques to GaAs devices. Specifically, bonding trials have been performed on a range of GaAs substrates using pulse tip and continuously heated thermocompression bonding and ultrasonic bonding. The results of this work have shown that thermocompression and ultrasonic wire bonding techniques are cabable of producing acceptable bonds to GaAs devices, although some of the advantages and limitations of each technique have been demonstrated. Thermocompression bonding with a continuously heated capillary gave the most tolerant envelope of bonding conditions and highest bond strengths. Pulse tip thermocompression bonding gave a less tolerant envelope of acceptable bonding conditions, required a longer bonding time and the wire was weakened above the ball bond. Ultrasonic bonding did not require any substrate heating to give acceptable bonds. However, the choice of equipment can be critical if damage to the device is to be avoided.

Details

Microelectronics International, vol. 4 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 January 1994

J. Falk, J. Hauke and G. Kyska

Although wire‐bonding is an established and well‐known technique for micro‐joining on leadframes, direct die‐attach without housing on printed circuit boards has some new…

Abstract

Although wire‐bonding is an established and well‐known technique for micro‐joining on leadframes, direct die‐attach without housing on printed circuit boards has some new requirements for the surface of the bond pads and the PCB itself. The best choice of material for the bond pads is a pure gold metallisation. The quality of the surface can be tested during wire‐bonding using the ultrasonic‐power process window. It will be shown that the surface and the PCB itself have a considerable influence on the ultrasonic and thermosonic bonding process.

Details

Circuit World, vol. 20 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 March 1985

R. Rodwell and D.A. Worrall

This paper reviews methods of quality control for the ultrasonic wire bonding process. It also covers the basic principles of the process, a model for the bonding mechanism, and…

Abstract

This paper reviews methods of quality control for the ultrasonic wire bonding process. It also covers the basic principles of the process, a model for the bonding mechanism, and the criteria which determine bond quality. In practice, quality control in production is mainly by batch destructive testing and by ensuring consistent performance of the bonding machine by, for example, periodic calibration. A more desirable approach is that of in‐process monitoring and control of every joint made. Although in‐process techniques have been extensively studied, they are currently little used because of the lack of a universal system, doubts on reliability and access problems. The in‐process monitoring and control techniques which have been studied have concentrated on methods which involve the detection of variations in the mechanical impedance of the bond zone; these are reflected back into the excitation system of the equipment during bond formation. It is believed that further development of these techniques, coupled with simultaneous monitoring of associated parameters, e.g., bonding wire deformation, offers hope of improved process control.

Details

Microelectronics International, vol. 2 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 February 1989

E. Goold

The potentially highly automated process of surface mounting electronic components directly onto a substrate or printed circuit board possesses a very weak link. Component…

Abstract

The potentially highly automated process of surface mounting electronic components directly onto a substrate or printed circuit board possesses a very weak link. Component movement subsequent to placement and before or during solder reflow leads to defect conditions such as tombstoning or rotational misalignment. This work investigates the feasibility of replacing this ‘weak’ assembly step(s) with ultrasonics. The selection and modification of suitable ultrasonic equipment is described as in the bonding of chip components onto PCBs. Reliability analysis of the resultant bonds along with bond quality in terms of shear strength and appearance under scanning electron microscope and optical microscope is studied. The results show that, with certain preferred directions of ultrasonic weld, weld preload and weld time bond strengths obtained compare very favourably with those achieved with the present surface mount technology reflow process, hence establishing the feasibility of ultrasonics for this application.

Details

Circuit World, vol. 15 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 December 1999

Teo Kiat Choon and Victor G. Corpuz

In a plastic BGA package, the glass transition temperature of 170‐215°C for bismaleimide triazine (BT) substrate puts an upper ceiling to the usable wire bond temperature. To…

Abstract

In a plastic BGA package, the glass transition temperature of 170‐215°C for bismaleimide triazine (BT) substrate puts an upper ceiling to the usable wire bond temperature. To compensate for the limitation in thermal energy, high frequency thermosonic bonding was proposed and successfully demonstrated for plastic BGA wire bonding. Design of experiment (DOE) and response surface methods (RSM) for process optimisation were used; bonded areas were also analysed using scanning electron microscope (SEM). Of the four major bonding parameters were investigated, ultrasonic power and bond force appeared to be the most important control factor for wire pulls and ball shear force optimisation. The results show that bonding at low temperature is viable with the use of high frequency transducer wire bonder.

Details

Microelectronics International, vol. 16 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 December 2000

Weihua Shi and Trevor Little

Investigates the potential for building smart seams by incorporating optic fibers ultrasonically. The heating and bonding mechanisms of ultrasonic welding process in fabrics were…

1986

Abstract

Investigates the potential for building smart seams by incorporating optic fibers ultrasonically. The heating and bonding mechanisms of ultrasonic welding process in fabrics were studied. Battle dress uniform (BDU) (50/50 nylon/cotton), 100 percent cotton, 100 percent polyester and Nomex fabrics were used and were bonded ultrasonically with and without polyurethane adhesives. The effects of three important welding parameters, namely weld pressure, weld time and amplitude of vibration, on the joint strength and the temperature profile at the interface were examined. The temperature profiles for different fabrics were measured during ultrasonic welding process. The attenuation degree of signal transition properties of optic fibers incorporated was tested to determine if ultrasonic process provided a possible way of embedding optic fibers into seams and achieving sufficient joint strength while the signal transmission properties of optic fibers incorporated were not changed significantly.

Details

International Journal of Clothing Science and Technology, vol. 12 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 February 2019

Muhammad Nubli Zulkifli, Fuaida Harun and Azman Jalar

This paper aims to analyze the effect of surface roughness and hardness of leadframe on the bondability of gold (Au) wedge bond using in situ inspection of laser interferometer…

Abstract

Purpose

This paper aims to analyze the effect of surface roughness and hardness of leadframe on the bondability of gold (Au) wedge bond using in situ inspection of laser interferometer and its relationship with the deformation and wire pull strength.

Design/methodology/approach

The in situ inspection of ultrasonic vibration waveform through the changes of vertical axis (y-axis) amplitude of wire bonder capillary was carried out using laser interferometer to analyze the formation of Au wedge bond. The relationship between the changes of ultrasonic waveform of capillary with the deformation and the pull strength was analyzed to evaluate the bondability of Au wedge bonds.

Findings

It was observed that the changes in vertical axis amplitude of ultrasonic vibration waveform of wire bonder capillary can be used to describe the process of bonding formation. The loss of ultrasonic energy was exhibited in ultrasonic vibration waveform of wire bonding on leadframe that has higher value of roughness (leadframe A) as compared to that of leadframe that has lower value of roughness (leadframe B). The lower pull strength obtained by Au wedge bond further confirms the reduction of bond formation because of the higher deformation on leadframe A as compared to that of leadframe B.

Originality/value

The relationship between in situ measurement using laser interferometer with the bondability or deformation and wire pull strength of Au wedge bonds on different surface roughness and hardness of leadframes is still lacking. These findings provide a valuable data in analyzing the bonding mechanisms that can be identified based on the in situ measurement of ultrasonic vibration and the bondability of Au wedge bonds.

Details

Microelectronics International, vol. 36 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 August 2017

Selin Hanife Eryuruk, Burçak Karagüzel Kayaoglu and Fatma Kalaoglu

Surgical gowns should be designed and produced using special techniques to provide barrier properties against potential risks during surgery and healthcare procedures. Ultrasonic

Abstract

Purpose

Surgical gowns should be designed and produced using special techniques to provide barrier properties against potential risks during surgery and healthcare procedures. Ultrasonic welding is one of these methods used to produce surgical gowns with determined barrier properties. The purpose of this paper is to analyse bond strength and permeability properties of ultrasonically welded nonwoven fabrics and compare them with traditional sewing techniques.

Design/methodology/approach

In this study, ultrasonic welding of nonwovens was performed to demonstrate its use as an assembly method. Performance requirements in the design of surgical gowns were determined. Fabric strengths and bond strengths of ultrasonic-welded and traditionally sewn fabrics were analysed. The performance properties, i.e., bond strength, air and water resistance of the fabrics and the joints obtained by ultrasonic and classical sewing methods were studied.

Findings

As a result, it was found that ultrasonic welding technique is a suitable method for joining layers in surgical gown production bringing the advantages of high water resistance together with acceptable bond strength.

Originality/value

The current study focuses on the use of ultrasonic welding of nonwovens used for disposable protective surgical gowns. Ultrasound welding technique was presented as an alternative to classic assembly methods and ultrasonic welding technology was applied to different fabric combinations simulating different layers in different joining sections of a surgical gown.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 1985

A.D. Weston

This paper is aimed at Engineers involved in production wire‐bonding processes and system maintenance. It traces the development of microbonding from its origins to the present…

Abstract

This paper is aimed at Engineers involved in production wire‐bonding processes and system maintenance. It traces the development of microbonding from its origins to the present day. Principles and techniques are examined and some approaches to fault diagnosis are explored.

Details

Microelectronics International, vol. 2 no. 3
Type: Research Article
ISSN: 1356-5362

1 – 10 of over 1000