Search results

1 – 10 of 211
Article
Publication date: 15 July 2020

Wenbin Gao, Weifeng Huang, Tao Wang, Ying Liu, Zhihao Wang and Yuming Wang

By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, an effective method to study the flow field of the…

Abstract

Purpose

By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, an effective method to study the flow field of the mechanical seal when both cavitation and boiling exist simultaneously is found.

Design/methodology/approach

Based on the finite volume method, a fluid model was developed to investigate a two-phase mechanical seal. The validity of the proposed model was verified by comparing with some classical models.

Findings

By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, the analysis of the gap flow field of the mechanical seal was realized when cavitation and boiling existed simultaneously.

Originality/value

Based on the model proposed for different conditions, the pressure and phase states in the shallow groove sealing gap were compared. The phase change rate between the mechanical seal faces was also investigated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0537/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 July 2019

Yun-Lei Wang, Jiu-Hui Wu, Mu-Ming Hao and Lu-Shuai Xu

The purpose of this paper is to investigate the effect of boundary slip on hydrodynamic performance of liquid film seal considering cavitation.

Abstract

Purpose

The purpose of this paper is to investigate the effect of boundary slip on hydrodynamic performance of liquid film seal considering cavitation.

Design/methodology/approach

A mathematical model of liquid film seal with slip surface was established based on the Navier slip model and Jakobsson–Floberg–Olsson (JFO) boundary condition. Liquid film governing equation was discretized by the finite difference method and solved by the SOR relaxation iterative algorithm and the hydrodynamic performance parameters of liquid film seal were obtained considering boundary slip and cavitation.

Findings

The results indicate that the values of performance parameters are affected significantly by the slip length under the condition of high speed and low differential pressure.

Originality/value

The performances of liquid film seal are investigated considering slip surface and cavitation. The results presented in the study are expected to provide a theoretical basis to improve the design method of liquid film seal.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 March 2023

Xiao-Ying Li, Zhen-Tao Li, Mu-Ming Hao, Qing-Yang Wang and Zeng-Li Wang

The purpose of this paper is to investigate the hydrodynamic performance of liquid film seals with oblique grooves (OGs) and spiral grooves (SGs), considering cavitation, compare…

Abstract

Purpose

The purpose of this paper is to investigate the hydrodynamic performance of liquid film seals with oblique grooves (OGs) and spiral grooves (SGs), considering cavitation, compare and analyze the differences between them.

Design/methodology/approach

Considering cavitation effect, the incompressible steady-state Reynolds equation was solved to obtain the sealing performance parameters of the liquid film seal with oblique groove and spiral groove.

Findings

The hydrodynamic performance of oblique groove seal (OGS) and spiral groove seal (SGS) shows a similar trend with the change of operating parameters. When the groove angle is less than 20°, the load-carrying capacity of SGS is better than that of OGS, while when the groove angle continues to increase, the hydrodynamic performance of OGS is slightly better than that of SGS, and more suitable for use under small differential pressure and high speed.

Originality/value

The hydrodynamic characteristics of liquid film seals with oblique grooves and spiral grooves considering cavitation effect were studied, which provides a theoretical reference for the application of oblique groove seal.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 April 2019

Xiuying Wang, Michael Khonsari, Siyuan Li, Qingwen Dai and Xiaolei Wang

This study aims to simultaneously enhance the load-carrying capacity and control the leakage rate of mechanical seals by optimizing the texture shape.

Abstract

Purpose

This study aims to simultaneously enhance the load-carrying capacity and control the leakage rate of mechanical seals by optimizing the texture shape.

Design/methodology/approach

A multi-objective optimization approach is implemented to determine the optimal “free-form” textures and optimal circular dimples. Experiments are conducted to validate the simulation results.

Findings

The experimental coefficient of friction (COF) and leakage rate are in good agreement with the calculated results. In addition, the optimal “free-form” texture shows a lower COF and a lower leakage in most cases.

Originality/value

This work provides a method to optimize the surface texture for a better combination performance of mechanical seals.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 July 2018

Nen-Zi Wang and Hsin-Yi Chen

A cross-platform paradigm (computing model), which combines the graphical user interface of MATLAB and parallel Fortran programming, for fluid-film lubrication analysis is…

133

Abstract

Purpose

A cross-platform paradigm (computing model), which combines the graphical user interface of MATLAB and parallel Fortran programming, for fluid-film lubrication analysis is proposed. The purpose of this paper is to take the advantages of effective multithreaded computing of OpenMP and MATLAB’s user-friendly interface and real-time display capability.

Design/methodology/approach

A validation of computing performance of MATLAB and Fortran coding for solving two simple sliders by iterative solution methods is conducted. The online display of the particles’ search process is incorporated in the MATLAB coding, and the execution of the air foil bearing optimum design is conducted by using OpenMP multithreaded computing in the background. The optimization analysis is conducted by particle swarm optimization method for an air foil bearing design.

Findings

It is found that the MATLAB programs require prolonged execution times than those by using Fortran computing in iterative methods. The execution time of the air foil bearing optimum design is significantly minimized by using the OpenMP computing. As a result, the cross-platform paradigm can provide a useful graphical user interface. And very little code rewritting of the original numerical models is required, which is usually optimized for either serial or parallel computing.

Research limitations/implications

Iterative methods are commonly applied in fluid-film lubrication analyses. In this study, iterative methods are used as the solution methods, which may not be an effective way to compute in the MATLAB’s setting.

Originality/value

In this study, a cross-platform paradigm consisting of a standalone MATLAB and Fortran codes is proposed. The approach combines the best of the two paradigms and each coding can be modified or maintained independently for different applications.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 June 2022

Cong Zhang, Jinbo Jiang and Xudong Peng

This paper aims to acquire the phase distribution and sealing performance of supercritical carbon dioxide (SCO2) dry gas seals with phase transitions.

Abstract

Purpose

This paper aims to acquire the phase distribution and sealing performance of supercritical carbon dioxide (SCO2) dry gas seals with phase transitions.

Design/methodology/approach

The SCO2 spiral groove dry gas seal is taken as the research object. The finite differential method is applied to solve the governing equations. Furthermore, the phase distribution and the sealing performance are obtained. Compared to the ideal gas model, the effect of phase transitions on sealing performance is also explored.

Findings

Vaporization is likely to occur near the inner radius when SCO2 dry gas seals are operated near the critical point. Whether phase transitions are considered in the model affects the sealing performance seriously. When phase transitions are considered, the sealing performance depends significantly on the working conditions, and unexpected results are produced when inlet conditions approach the critical point.

Originality/value

The numerical model for SCO2 dry gas seals with phase transitions is established. The phase distribution and the sealing performance of SCO2 dry gas seals are explored.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 May 2022

Cheng Zhang, Jianfeng Zhou and Xiannian Meng

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads…

Abstract

Purpose

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads to seal failure and MRF deterioration. The purpose of this study is to investigate the mechanism of temperature rise of MRF film under the action of the three-field coupling of the flow field, temperature field and magnetic field.

Design/methodology/approach

The fluid film was simplified as a Couette flow in this work to simulate the temperature change in the sealing fluid film under different working conditions. The corresponding experiment for test the temperature rise was also carried out, and the temperature of the characteristic point of the stationary ring was measured to validate the model.

Findings

The results show that the temperature rise is mainly affected by the rotational speed, magnetic field strength and fluid film thickness. The magnetic field enhances the convective heat transfer in the MRF film. The thinner the fluid film, the more frictional heat generated. The MRF film reaches its maximum temperature at the contact with the end face of rotating ring due to frictional heat.

Originality/value

A method for temperature rise analysis of MRF fluid sealing films based on Couette flow is established. It is helpful for the study of liquid film frictional heat in MRF seals.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 August 2019

Sen Jiang, Hua Ji, Tianhao Wang, Donglin Feng and Qian Li

The shapes of surface textures have been designed to control the leakage of mechanical seals in recent years. The purpose of this paper is to demonstrate the influence of…

Abstract

Purpose

The shapes of surface textures have been designed to control the leakage of mechanical seals in recent years. The purpose of this paper is to demonstrate the influence of geometric properties of elliptical dimples on the leakage rate.

Design/methodology/approach

A new geometric feature point is expressed using an analytical solution to locate the high-pressure zones. Furthermore, a numerical model of the three-dimensional flow field for the mechanical seal with elliptical dimples is developed using ANSYS Fluent to demonstrate the influencing mechanism.

Findings

The location of the proposed geometric converging point coincides with the maximum pressure point under different orientation angles. An inward flow on the leakage section observed from the simulation results is responsible for decreasing the leakage rate.

Originality/value

The influencing mechanism of the elliptical dimple on the leakage rate is demonstrated, which can facilitate the design of surface textures.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 May 2021

Benliang Xu, Zuchao Zhu, Zhe Lin, Dongrui Wang and Guangfei Ma

The purpose of this paper is to analyze the mechanism of particle erosion in butterfly valve pipelines under hydraulic transportation conditions. The results will affect the…

Abstract

Purpose

The purpose of this paper is to analyze the mechanism of particle erosion in butterfly valve pipelines under hydraulic transportation conditions. The results will affect the sealing and safety of butterfly valve pipelines and hopefully serve as reference for the anti-erosion design of butterfly valve pipelines.

Design/methodology/approach

Through the discrete element method (DEM) simulation that considers the force between particles, the detached eddy simulation (DES) turbulence model based on realizable k-epsilon is used to simulate the solid-liquid two-phase flow-induced erosion condition when the butterfly valve is fully opened. The simulation is verified by building an experimental system correctness. The solid-liquid two-phase flow characteristics, particle distribution and erosion characteristics of the butterfly valve pipeline under transportation conditions are studied.

Findings

The addition of particles may enhance the high-speed area behind the valve. It first increases and then decreases with increasing particle size. With increasing particle size, the low-velocity particles change from being uniformly distributed in flow channel to first gathering in the front of the valve and, then, to gathering in lower part of it. Fluid stagnation at the left arc-shaped flange leads to the appearance of two high-speed belts in the channel. With increasing fluid velocity, high-speed belts gradually cover the entire valve surface by focusing on the upper and lower ends, resulting in the overall aggravation of erosion.

Originality/value

Considering the complexity of solid-liquid two-phase flow, this is the first time that the DEM method with added inter-particle forces and the DES turbulence model based on realizable k-epsilon has been used to study the flow characteristics and erosion mechanism of butterfly valves under fully open transportation conditions.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2020

Benliang Xu, Zuchao Zhu, Zhe Lin and Dongrui Wang

The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design.

Abstract

Purpose

The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design.

Design/methodology/approach

In this paper, computational fluid dynamics discrete element method (CFD-DEM) simulation was conducted to study the solid–liquid two-phase flow characteristics and erosion characteristics of a butterfly valve with a different opening.

Findings

Abrasion at 10% opening is affected by high-speed jets in upper and lower parts of the pipeline, where the erosion is intense. The impact of the jet on the upper part of 20% opening begins to weaken. With the top backflow vortex disappearing, the effect of lower jet is enhanced. Meanwhile, the bottom backflow vortex phenomenon is obvious, and the abrasion position moves downward. At 30% opening, the velocity is further weakened, and the circulation effect of lower flow channel is more obvious than that of the upper one.

Originality/value

It is the first time to use DEM to investigate the two-phase flow and erosion characteristics at a small opening of a butterfly valve, considering the effect of inter-particle collision. Therefore, this study carries on the thorough analysis and discussion. At the same opening degree, with increasing of the particle size, the abrasion of valve frontal surface increases when the size is less than 150 µm and decreases when it is greater than 150 µm. For the valve backflow surface, this boundary value becomes 200 µm.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0264/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 211