Search results

1 – 10 of over 3000
Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2024

Iman Bashtani and Javad Abolfazli Esfahani

This study aims to introduce a novel machine learning feature vector (MLFV) method to bring machine learning to overcome the time-consuming computational fluid dynamics (CFD…

Abstract

Purpose

This study aims to introduce a novel machine learning feature vector (MLFV) method to bring machine learning to overcome the time-consuming computational fluid dynamics (CFD) simulations for rapidly predicting turbulent flow characteristics with acceptable accuracy.

Design/methodology/approach

In this method, CFD snapshots are encoded in a tensor as the input training data. Then, the MLFV learns the relationship between data with a rod filter, which is named feature vector, to learn features by defining functions on it. To demonstrate the accuracy of the MLFV, this method is used to predict the velocity, temperature and turbulent kinetic energy fields of turbulent flow passing over an innovative nature-inspired Dolphin turbulator based on only ten CFD data.

Findings

The results indicate that MLFV and CFD contours alongside scatter plots have a good agreement between predicted and solved data with R2 ≃ 1. Also, the error percentage contours and histograms reveal the high precisions of predictions with MAPE = 7.90E-02, 1.45E-02, 7.32E-02 and NRMSE = 1.30E-04, 1.61E-03, 4.54E-05 for prediction velocity, temperature, turbulent kinetic energy fields at Re = 20,000, respectively.

Practical implications

The method can have state-of-the-art applications in a wide range of CFD simulations with the ability to train based on small data, which is practical and logical regarding the number of required tests.

Originality/value

The paper introduces a novel, innovative and super-fast method named MLFV to address the time-consuming challenges associated with the traditional CFD approach to predict the physics of turbulent heat and fluid flow in real time with the superiority of training based on small data with acceptable accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2007

Jianzhong Lin, Shanliang Zhang and James A. Olson

This paper seeks to explore the fiber orientation distribution and rheological properties of turbulent fiber suspensions flowing through a contraction.

Abstract

Purpose

This paper seeks to explore the fiber orientation distribution and rheological properties of turbulent fiber suspensions flowing through a contraction.

Design/methodology/approach

The Reynolds averaged Navier‐Stokes equation was solved with the Reynolds stress model to get the mean fluid velocity and the turbulent kinetic energy in the turbulent flow of a contraction with rectangular cross‐section. The turbulent velocity fluctuations were represented as a Fourier series with random coefficients. Then the slender‐body theory was used to predict the fiber orientation distribution, orientation tensor, additional shear stress and first normal stress difference of suspensions in the flow.

Findings

It is found that the longer fibers tend to align the streamline easily. Increased contraction ratio results in higher fiber alignment in the direction of flow. The fibers are weakly and strongly aligned in the direction of flow in the region near the inlet and the exit, respectively. Fibers are significantly more aligned in the plane of the contraction than in the xz plane. Contraction ratio and fiber length were shown to strongly and weakly affect the distributions of additional shear stress and first normal stress difference.

Originality/value

It is the first time that the fiber orientation distribution and rheological properties of turbulent fiber suspensions flowing through a contraction have been computed numerically. The computational approach and results are valuable to the design and operation of contraction used in the industrial processes.

Details

Engineering Computations, vol. 24 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 March 2008

Liu Jingjun, Lin Yuzhen and Li Xiaoyu

This paper aims to study flow‐induced corrosion mechanisms for carbon steel in high‐velocity flowing seawater and to explain corrosive phenomena.

Abstract

Purpose

This paper aims to study flow‐induced corrosion mechanisms for carbon steel in high‐velocity flowing seawater and to explain corrosive phenomena.

Design/methodology/approach

An overall mathematical model for flow‐induced corrosion of carbon steel in high‐velocity flow seawater was established in a rotating disk apparatus using both numerical simulation and test methods. By studying the impact of turbulent flow using the kinetic energy of a turbulent approach and the effects of the computational near‐wall hydrodynamic parameters on corrosion rates, corrosion behavior and mechanism are discussed here. It is applicable in order to understand in depth the synergistic effect mechanism of flow‐induced corrosion.

Findings

It was found that it is scientific and reasonable to investigate carbon steel corrosion through correlation of the near‐wall hydrodynamic parameters, which can accurately describe the influence of fluid flow on corrosion. The computational corrosion rates obtained by this model are in good agreement with measured corrosion data. It is shown that serious flow‐induced corrosion is caused by the synergistic effect between the corrosion electrochemical factor and the hydrodynamic factor, while the corrosion electrochemical factor plays a dominant role in flow‐induced corrosion.

Originality/value

The corrosion kinetics and mechanism of metals in a high‐velocity flowing medium is discussed here. These results will help those interested in flow‐induced corrosion to understand in depth the type of issue.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 September 1995

Zuu‐Chang Hong, Ching Lin and Ming‐Hua Chen

A transport equation for the one‐point velocity probability densityfunction (pdf) of turbulence is derived, modelled and solved. The new pdfequation is obtained by two modeling…

Abstract

A transport equation for the one‐point velocity probability density function (pdf) of turbulence is derived, modelled and solved. The new pdf equation is obtained by two modeling steps. In the first step, a dynamic equation for the fluid elements is proposed in terms of the fluctuating part of Navier‐Stokes equation. A transition probability density function (tpdf) is extracted from the modelled dynamic equation. Then the pdf equation of Fokker‐Planck type is obtained from the tpdf. In the second step, the Fokker‐Planck type pdf equation is modified by Lundgren’s formal pdf equation to ensure it can properly describe the turbulence intrinsic mechanism. With the new pdf equation, the turbulent plane Couette flow is solved by the direct finite difference method coupled with dimensionality reduction and QUICKER scheme. A simple boundary treatment is proposed such that the near‐wall solution is tractable and then no refined grid is required. The calculated mean velocity, friction coefficient, and turbulence structure are in good agreement with available experimental data. In the region departed from the center of flow field, the contours of isojoint pdf of V1 and V2 is very similar to that of experimental result of channel flow. These agreements show the validity of the new pdf model and the availability of the boundary treatment and QUICKER scheme for solving the turbulent plane Couette flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1993

BIJAN FARHANIEH and BENGT SUNDEN

Turbulent fully developed periodic heat transfer and fluid flow characteristics in corrugated two‐dimensional ducts with constant cross‐sectional area are numerically…

Abstract

Turbulent fully developed periodic heat transfer and fluid flow characteristics in corrugated two‐dimensional ducts with constant cross‐sectional area are numerically investigated. The governing equations are solved numerically by a finite‐volume method for elliptic flows in complex geometries using collocated variables and Cartesian velocity components. Two different turbulence models (the second moment closure and the k—ε) for approximation of the Reynolds stresses are applied. The performance of the models were assessed by comparing the results with experimental data. The results show the advantages of the stress closure model compared to the k—ε model. The overall Nusselt number and the pressure drop ratio results are obtained for the boundary condition of a uniform wall temperature for two inclination angles ø and two duct aspect ratios (H/L) and for Reynolds number ranging from around 3000 to 35,000. The overall Nusselt number predicted by the k—ε model is upto 25% higher than the values predicted by the second moment closure. The plots of the velocity vectors show a complex flow pattern. The mechanisms of heat transfer are explained by the flow phenomena separation, deflection, recirculation, and reattachment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 April 2019

Erfan Khodabandeh, Davood Toghraie, A. Chamkha, Ramin Mashayekhi, Omidali Akbari and Seyed Alireza Rozati

Increasing heat transfer rate in spiral heat exchangers is possible by using conventional methods such as increasing number of fluid passes and counter flowing. In addition, newer…

Abstract

Purpose

Increasing heat transfer rate in spiral heat exchangers is possible by using conventional methods such as increasing number of fluid passes and counter flowing. In addition, newer ideas such as using pillows as baffles in the path of cold and hot fluids and using nanofluids can increase heat transfer rate. The purpose of this study is to simulate turbulent flow and heat transfer of two-phase water-silver nanofluid with 0-6 Vol.% nanoparticle concentration in a 180° path of spiral heat exchanger with elliptic pillows.

Design/methodology/approach

In this simulation, the finite volume method and two-phase mixture model are used. The walls are subjected to constant heat flux of q″ = 150,000 Wm−2. The inlet fluid enters curves path of spiral heat exchanger with uniform temperature Tin = 300 K. After flowing past the pillows and traversing the curved route, the working fluid exchanges heat with hot walls and then exits from the section. In this study, the effect of radiation is disregarded because of low temperature range. Also, temperature jump and velocity slipping are disregarded. The effects of thermophoresis and turbulent diffusion on nanofluid heat transfer are disregarded. By using finite volume method and two-phase mixture model, simulations are performed.

Findings

The results show that the flow and heat transfer characteristics are dependent on the height of pillows, nanoparticle concentration and Reynolds number. Increasing Reynolds number, nanoparticle concentration and pillow height causes an increase in Nusselt number, pressure drop and pumping power.

Originality/value

Turbulent flow and heat transfer of two-phase water-silver nanofluid of 0-6 per cent volume fraction in a 180° path of spiral heat exchanger with elliptic pillows is simulated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1993

M.R. CASEY, L. KONG, C. TAYLOR and J.O. MEDWELL

A finite element based numerical model is employed to obtain isothermal and heat transfer predictions for the case of turbulent flow with a decaying swirl component in a…

Abstract

A finite element based numerical model is employed to obtain isothermal and heat transfer predictions for the case of turbulent flow with a decaying swirl component in a stationary circular pipe. An assessment is made on the quality of predictions based on the choice of turbulence modelling technique adopted to close the governing equations. In the present work the one‐equation, two‐equation and algebraic Reynolds stress turbulence models are employed. For the confined flow problem investigated, accurate prediction of the near‐wall conditions is essential. This is particularly the case for confined swirling flow where the variation of variables near the wall is often somewhat greater than encountered in pure axial flow. A finite element based near‐wall model is employed as an alternative to conventional techniques such as the use of the standard logarithmic functions. Of significance is the fact that flow predictions based on the use of the unidimensional finite element techniques are closer to experiment compared to the wall function based solutions for a given turbulence model. As expected, improvements in the flow predictions directly contribute to improved simulation of the thermal aspects of the problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1998

J.J. Hwang, T.Y. Lia and S.H. Chen

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls of this…

Abstract

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls of this two‐pass channel are subject to a constant heat flux. A two‐equation kε turbulence model with modified terms for Coriolis and rotational buoyancy is employed to resolve this elliptic problem. The duct through‐flow rate and rotating speed are fixed constantly; while the wall heat flux into the fluid is varied to examine the rotating buoyancy effect on the heat transfer and fluid flow characteristics. It is disclosed that the changes in local heat transfer due to the rotational buoyancy in the radially outward flow are more significant than those in the radially inward flow. However, the channel averaged heat transfer is altered slightly due to the rotational buoyancy in the both ducts. Whenever the buoyancy effects are sufficiently strong, the flow reversal appears over the leading face of the radially outward‐flow channel, and the radial distance for initiation of flow separation decreases with increasing the buoyancy parameter. A comparison of the present numerical results with the available experimental data by taking buoyancy into consideration is also presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1994

S. Torii and W. ‐J. Yang

A theoretical study is performed to investigate turbulent flow and heattransfer characteristics in a concentric annulus with a heated inner cylindermoving in the direction of flow

Abstract

A theoretical study is performed to investigate turbulent flow and heat transfer characteristics in a concentric annulus with a heated inner cylinder moving in the direction of flow (Couette flow). The two‐equation k‐ε model is employed to determine turbulent viscosity and kinetic energy. The Reynolds stress and turbulent heat flux are expressed by Boussinesq’s approximation. The governing boundary‐layer equations are discretized by means of a control volume finite‐difference technique and numerically solved using a marching procedure. Results are obtained for the time‐averaged streamwise velocity profile, turbulent kinetic energy profile, friction factor, and Nusselt number. These results agree well with experimental data in the existing literature. It is concluded from the study that the streamwise movement of the inner wall induces an attenuation in the turbulent kinetic energy, resulting in a reduction in the heat transfer performance and an increase in the velocity ratio of the moving inner cylinder to the fluid flow causes a substantial decrease in both the friction factor and the Nusselt number as well as a drastic reduction in the turbulent kinetic energy in the inner wall region.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 3000