Search results

1 – 10 of 211
Open Access
Article
Publication date: 5 November 2020

Hongyuan Wang and Jingcheng Wang

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors…

Abstract

Purpose

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors need to identify them before further optimization. For fully considering multiple crucial performance of TBM, the authors establish an optimization problem for TBM so that it can be adapted to varying geology. That is, TBM can operate optimally under corresponding geology, which is called geology-adaptability.

Design/methodology/approach

This paper adopted k-nearest neighbor (KNN) algorithm with modification to identify geological conditions. The modification includes adjustment of weights in voting procedure and similarity distance measurement, which at suitable for engineering and enhance accuracy of prediction. The authors also design several key performances of TBM during operation, and built a multi-objective function. Further, the multi-objective function has been transformed into a single objective function by weighted-combination. The reformulated optimization was solved by genetic algorithm in the end.

Findings

This paper provides a support for decision-making in TBM control. Through proposed optimization control, the advance speed of TBM has been enhanced dramatically in each geological condition, compared with the results before optimizing. Meanwhile, other performances are acceptable and the method is verified by in situ data.

Originality/value

This paper fulfills an optimization control of TBM considering several key performances during excavating. The optimization is conducted under different geological conditions so that TBM has geological-adaptability.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Book part
Publication date: 25 April 2022

Afikah Binti Rahim and Hareyani Zabidi

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were

Abstract

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were statistically evaluated from the rock mechanic laboratory works at the selected sections around 2,000 m of the tunnel (named as NATM-1). According to a statistical analysis, lithotypes, geological structures, and region geology have a significant impact on the mechanical behaviour of the metasedimentary rock. In the Brazilian test, the fracture behaviour of the disc specimens was highly related to the reliability and precision of the experimental data by validations of methods. In this work, the impact of different loading methods and rock lithotypes on the failure mechanism of Brazilian discs was examined utilising five different metasedimentary rock types and three different loading methods. During the loading operation, the strain and displacement fields of the specimens were recorded and evaluated using a computerised strain gauge system. The rock types, according to experimental data, have a significant impact on the peak load and deformation properties of Brazilian discs. With the method below, tensile strength point of a disc specimen is clearly regulated by the material stiffness and tensile–compression ratio. Seismic occurrences have had a substantial impact on changing the rock and exerting forces that may affect its mechanical characteristics as well as its vulnerability to weathering effects or discontinuities. As a result, the goal of this study is to look into the connection between rock mechanics and metasedimentary rock stress analysis in NATM-1, Karak, Pahang.

Details

Sustainability Management Strategies and Impact in Developing Countries
Type: Book
ISBN: 978-1-80262-450-2

Keywords

Article
Publication date: 5 March 2018

Wei Zhang, Beibing Dai, Zhen Liu and Cuiying Zhou

The cracking of a reinforced concrete lining has a significant influence on the safety and leakage of pressure tunnels. This study aims to develop, validate and apply a numerical…

Abstract

Purpose

The cracking of a reinforced concrete lining has a significant influence on the safety and leakage of pressure tunnels. This study aims to develop, validate and apply a numerical algorithm to simulate the lining cracking process during the water-filling period of pressure tunnels.

Design/methodology/approach

Cracks are preset in all lining elements, and the Mohr−Coulomb criterion with a tension cutoff is used in determining whether a preset crack becomes a real crack. The effects of several important factors such as the water pressure on crack surfaces (WPCS) and the heterogeneity of the lining tensile strength are also considered simultaneously.

Findings

The crack number and width increase gradually with the increase in internal water pressure. However, when the pressure reaches a threshold value, the increase in crack width becomes ambiguous. After the lining cracks, the lining displacement distribution is discontinuous and steel bar stress is not uniform. The measured stress of the steel bar is greatly determined by the position of the stress gauge. The WPCS has a significant influence on the lining cracking mechanism and should not be neglected.

Originality/value

A reliable algorithm for simulating the lining cracking process is presented by which the crack number and width can be determined directly. The numerical results provide an insight into the development law of lining cracks and show that the WPCS significantly affects the cracking mechanism.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 February 2022

Ha Duy Khanh, Soo Yong Kim and Le Quoc Linh

This study aims to focus on exploring the construction productivity of building projects under the influence of potential factors. The three primary purposes are (1) determining…

Abstract

Purpose

This study aims to focus on exploring the construction productivity of building projects under the influence of potential factors. The three primary purposes are (1) determining critical factors affecting construction productivity; (2) identifying causal relationship and occurrence probability of these factors to develop a Bayesian network (BN) model; and (3) validating the accuracy of predictions from the proposed BN model via a case study.

Design/methodology/approach

A conceptual framework that includes three performance stages was used. Twenty-two possible factors were screened from a comprehensive literature review and evaluated through expert opinions. Data were collected using a structured questionnaire-based survey and case-study-based survey. The sampling methods were based on non-probability sampling.

Findings

Worker characteristic-related factors significantly affect labour productivity for a construction task. Construction productivity is dominated by the working frequency of workers (overtime), complexity of the task, level of technology application and accidents. Labour productivity is defined as nearly 50% of the baseline productivity using the BN model created by the caut 2sal relationship and probability of factors. The prediction error of the BN model was 6.6%, 10.0% and 9.3% for formwork (m2/h), reinforcing steel (ton/h) and concrete (m3/h), respectively.

Research limitations/implications

The evaluation or prediction of productivity performance has become a necessary topic for research and practice.

Practical implications

Managers and practitioners in the construction sector can utilise the outcome of this study to create good productivity management policies for their prospective projects.

Originality/value

Worker-related characteristics are dominant among critical factors affecting labour productivity for a construction task; the proposed BN-based predictive model is built based on these critical factors. The BN approach is highly accurate for construction productivity prediction. The findings of this study can fill gaps in the construction management body of knowledge when modelling construction productivity under the effects of multiple factors and using a simple probabilistic graphic tool.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2341

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 6 July 2012

Vahed Ghiasi, Samad Ghiasi and Arun Prasad

The purpose of this study is to evaluate the methods employed for classifying and quantifying the potential of squeezing in tunnels. Along with the empirical and semi‐empirical…

Abstract

Purpose

The purpose of this study is to evaluate the methods employed for classifying and quantifying the potential of squeezing in tunnels. Along with the empirical and semi‐empirical approaches presently available in order to anticipate the potential of squeezing tunnel problems, the squeezing potential of Karaj water transfer tunnel and North West Tunnel Convey (NWTC) tunnels (Lot 2), located in Iran, are evaluated and presented. Those two case studies have an interesting geology profile and parameters to identify and then evaluate the squeezing potential.

Design/methodology/approach

In recent years, there has been an increasing interest in the tunnel construction. This paper describes the squeezing behavior of poor rock mass associated with deformability and strength properties. In Karaj water transfer tunnel, there are eight lithological rock types; and NWTC tunnel (Lot2) has 21 Lithological rock types. The parameters for rock classification, such as rock quality designation (RQD), rock mass rating (RMR), modified RMR, Q‐system, geological strength index (GSI), rock mass index (RMi), and rock structure rating (RSR) are evaluated and presented here. The parameters mentioned above are the input parameters for squeezing study in Karaj and NWTC tunnels. According to different methods of squeezing evaluation of tunnel presented in tables, the results of two case studies are presented in this paper.

Findings

One of the more significant findings to emerge from this study showed that about 3 km of the second part of NWTC tunnel, and 2 km of the Karaj tunnel have high squeezing potential. This research deals with not only an overview of the methods used for the identifying and quantifying of squeezing along with the empirical and semi‐empirical approaches presently available in order to anticipate the potential of squeezing tunnel problem, but also the case studies of NWTC and Karaj tunnels to evaluate and compare the potential of squeezing by different methods. These two tunnel case studies have high potential of squeezing therefore the lining of those two tunnels must be strong enough to overcome this issue.

Originality/value

This study is a precise and concise comparison of the evaluation of tunnels under squeezing rock condition. The present study confirms the previous findings and contributes additional evidence that suggests that there are many studies conducted using empirical and analytical methods to determine the squeezing phenomenon in tunnels. This paper responds to the various questions like, what is the squeezing phenomenon. How can we quantify the potential of squeezing in weak rock? What are the different approaches to the understanding of squeezing phenomenon?

Details

Journal of Engineering, Design and Technology, vol. 10 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 April 2020

Annan Jiang, Shuai Zheng and Shanyong Wang

This paper aims at the problem of surrounding rock excavation damage zone of tunneling in the rich water region, this paper aims to propose a new seepage-stress-damage coupling…

Abstract

Purpose

This paper aims at the problem of surrounding rock excavation damage zone of tunneling in the rich water region, this paper aims to propose a new seepage-stress-damage coupling model and studied the numerical algorithm. This reflects the characteristics of rock damage evolution, accompanied by plastic flow deformation and multi-field interaction.

Design/methodology/approach

First of all, rock elastoplastic damage constitutive model based on the Drucker–Prager criterion is established, the fully implicit return mapping algorithm is adopted to realize the numerical solution. Second, based on the relation between damage variation and permeability coefficient, the rock stress-seepage-damage model and multi-field coupling solving iterative method are presented. Finally, using the C++ language compiled the corresponding programs and simulated tunnel engineering in the rich water region.

Findings

Results show that difference evolution-based back analysis inversed damage parameters well, at the same time the established coupling model and calculating program have more advantages than general conventional methods. Multiple field coupling effects should be more considered for the design of tunnel support.

Originality/value

The proposed method provides an effective numerical simulation method for the construction of the tunnel and other geotechnical engineering involved underground water problems.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 2 May 2022

Ao Li, Dingli Zhang, Zhenyu Sun, Jun Huang and Fei Dong

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to…

Abstract

Purpose

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.

Design/methodology/approach

In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway. An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.

Findings

Microseismic events can be divided into high density area, medium density area and low density area according to the density distribution of microseismic events. The positions where the cumulative distribution frequencies of microseismic events are 60 and 80% are identified as the boundaries between high and medium density areas and between medium and low density areas, respectively. The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock, which is affected by the grade of surrounding rock and the span of tunnel. The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters. The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock. The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed. Based on the depth of high excavation damage zone of surrounding rock, the prestressed anchor cable (rod) is designed, and the safety of anchor cable (rod) design parameters is verified by the deformation results of surrounding rock.

Originality/value

The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable (rod).

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 4 October 2018

Xueliang Zhang, Meixia Wang, Binghua Zhou and Xintong Wang

Because of the properties of loess, the occurrence of collapse following deformation of a large settlement is a common problem during the excavation of tunnels on loess ground…

Abstract

Purpose

Because of the properties of loess, the occurrence of collapse following deformation of a large settlement is a common problem during the excavation of tunnels on loess ground. Hence, risk management for safer loess tunnel construction is of great significance. The purpose of this paper is to explore the influence of factors on collapse risk of loess tunnels and establish a risk assessment model using rough set theory and extension theory.

Design/methodology/approach

The surrounding rock level, groundwater conditions, burial depth, excavation method and support close time were selected as the factors and settlement deformation was the verification index for risk assessment. First, using rough set theory, the influence of risk factors on the collapse risk of loess tunnels was calculated by researching engineering data of excavated sections. Then, a collapse risk assessment model was developed based on extension theory. As the final step, the model was applied to practical engineering in the Loess Plateau of China.

Findings

The weights of surrounding rock level, groundwater conditions, burial depth, excavation method and support close time obtained using rough set theory were respectively 10.811 per cent, 18.919 per cent, 24.324 per cent, 40.541 per cent and 5.406 per cent. The assessment results obtained using the model were in good agreement with field observations.

Originality/value

This study highlights key points in collapse risk management of loess tunnels, which could be very useful for future construction methods. The model, using easily obtained parameters, helps in predicting the collapse risk level of loess tunnels excavated under different geological conditions and by different construction organizations and provides a reference for future studies.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 July 2022

Yongliang Wang, Jin Huang and Guocheng Wang

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration…

Abstract

Purpose

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration, plastic deformation and rock strata compression deformation. The depth of deep resources, excavation rate and multilayered heterogeneity are critical factors of excavation disturbance in deep rock. However, at present, there are few engineering practices used in deep resource mining, and it is difficult to analyse the high in situ stress and dynamic three-dimensional (3D) excavation process in laboratory experiments. As a result, an understanding of the behaviours and mechanisms of the dynamic evolution of the stress field and plastic zone in deep tunnelling and mining surrounding rock is still lacking.

Design/methodology/approach

This study introduced a 3D engineering-scale finite element model and analysed the scheme involved the elastoplastic constitutive and element deletion techniques, while considering the influence of the deep rock mass of the roadway excavation, coal seam mining-induced stress, plastic zone in the process of mining disturbance of the in situ stress state, excavation rate and layered rock mass properties at the depths of 500 m, 1,500 m and 2,500 m of several typical coal seams, and the tunnelling and excavation rates of 0.5 m/step, 1 m/step and 2 m/step. An engineering-scale numerical model of the layered rock and soil body in an actual mining area were also established.

Findings

The simulation results of the surrounding rock stress field, dynamic evolution and maximum value change of the plastic zone, large deformation and settlement of the layered rock mass are obtained. The numerical results indicate that the process of mining can be accelerated with the increase in the tunnelling and excavation rate, but the vertical concentrated stress induced by the surrounding rock intensifies with the increase in the excavation rate, which becomes a crucial factor affecting the instability of the surrounding rock. The deep rock mass is in the high in situ stress state, and the stress and plastic strain maxima of the surrounding rock induced by the tunnelling and mining processes increase sharply with the excavation depth. In ultra-deep conditions (depth of 2,500 m), the maximum vertical stress is quickly reached by the conventional tunnelling and mining process. Compared with the deep homogeneous rock mass model, the multilayered heterogeneous rock mass produces higher mining-induced stress and plastic strain in each layer during the entire process of tunnelling and mining, and each layer presents a squeeze and dislocation deformation.

Originality/value

The results of this study can provide a valuable reference for the dynamic evolution of stress and plastic deformation in roadway tunnelling and coal seam mining to investigate the mechanisms of in situ stress at typical depths, excavation rates, stress concentrations, plastic deformations and compression behaviours of multilayered heterogeneity.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 211