Search results

1 – 10 of 192
Article
Publication date: 14 December 2023

Xiwen Zhang, Zhen Zhang, Wenhao Sun, Jilei Hu, Liangliang Zhang and Weidong Zhu

Under the repeated action of the construction load, opening deformation and disturbed deformation occurred at the precast box culvert joints of the shield tunnel. The objective of…

Abstract

Purpose

Under the repeated action of the construction load, opening deformation and disturbed deformation occurred at the precast box culvert joints of the shield tunnel. The objective of this paper is to investigate the effect of construction vehicle loading on the mechanical deformation characteristics of the internal structure of a large-diameter shield tunnel during the entire construction period.

Design/methodology/approach

The structural response of the prefabricated internal structure under heavy construction vehicle loads at four different construction stages (prefabricated box culvert installation, curved lining cast-in-place, lane slab installation and pavement structure casting) was analyzed through field tests and ABAQUS (finite element analysis software) numerical simulation.

Findings

Heavy construction vehicles can cause significant mechanical impacts on the internal structure, as the construction phase progresses, the integrity of the internal structure with the tunnel section increases. The vertical and horizontal deformation of the internal structure is significantly reduced, and the overall stress level of the internal structure is reduced. The bolts connecting the precast box culvert have the maximum stress at the initial stage of construction, as the construction proceeds the stress distribution among the bolts gradually becomes uniform.

Originality/value

This study can provide a reference for the design model, theoretical analysis and construction technology of the internal structure during the construction of large-diameter tunnel projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 November 2023

Ruizhen Song, Xin Gao, Haonan Nan, Saixing Zeng and Vivian W.Y. Tam

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based…

Abstract

Purpose

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based on multi-source heterogeneous data and will enable stakeholders to solve practical problems in decision-making processes and prevent delayed responses to the demand for ecological restoration.

Design/methodology/approach

Based on the principle of complexity degradation, this research collects and brings together multi-source heterogeneous data, including meteorological station data, remote sensing image data, railway engineering ecological risk text data and ecological restoration text data. Further, this research establishes an ecological restoration plan library to form input feature vectors. Random forest is used for classification decisions. The ecological restoration technologies and restoration plant species suitable for different regions are generated.

Findings

This research can effectively assist managers of mega-infrastructure projects in making ecological restoration decisions. The accuracy of the model reaches 0.83. Based on the natural environment and construction disturbances in different regions, this model can determine suitable types of trees, shrubs and herbs for planting, as well as the corresponding ecological restoration technologies needed.

Practical implications

Managers should pay attention to the multiple types of data generated in different stages of megaproject and identify the internal relationships between these multi-source heterogeneous data, which provides a decision-making basis for complex management decisions. The coupling between ecological restoration technologies and restoration plant species is also an important factor in improving the efficiency of ecological compensation.

Originality/value

Unlike previous studies, which have selected a typical section of a railway for specialized analysis, the complex decision-making model for ecological restoration proposed in this research has wider geographical applicability and can better meet the diverse ecological restoration needs of railway projects that span large regions.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 February 2024

Xiaobo Shi, Yan Liu, Kunkun Ma, Zixin Gu, Yaning Qiao, Guodong Ni, Chibuzor Ojum, Alex Opoku and Yong Liu

The purpose is to identify and evaluate the safety risk factors in the coal mine construction process.

Abstract

Purpose

The purpose is to identify and evaluate the safety risk factors in the coal mine construction process.

Design/methodology/approach

The text mining technique was applied in the stage of safety risk factor identification. The association rules method was used to obtain associations with safety risk factors. Decision-Making Trial and Evaluation Laboratory (DEMATEL) and Interpretative Structural Modeling (ISM) were utilized to evaluate safety risk factors.

Findings

The results show that 18 safety risk factors are divided into 6 levels. There are 12 risk transmission paths in total. Meanwhile, unsafe behavior and equipment malfunction failure are the direct causes of accidents, and inadequate management system is the basic factor that determines the safety risk status.

Research limitations/implications

Due to the limitation of the computational matrix workload, this article only categorizes numerous lexical items into 18 factors. Then, the workshop relied on a limited number of experts; thus, the findings may be potentially biased. Next, the accident report lacks a universal standard for compilation, and the use of text mining technique may be further optimized. Finally, since the data are all from China, subsequent cross-country studies should be considered.

Social implications

The results can help China coal mine project managers to have a clear understanding of safety risks, efficiently carry out risk hazard identification work and take timely measures to cut off the path of transmission with risks identified in this study. This helps reduce the economic losses of coal mining enterprises, thus improving the safety standards of the entire coal mining industry and the national standards for coal mine safety policy formulation.

Originality/value

Coal mine construction projects are characterized by complexity and difficulties in construction. Current research on the identification and assessment of safety risk factors in coal mine construction is insufficient. This study combines objective and systematic research approaches. The findings contribute to the safety risk management of China coal mine construction projects by providing a basis for the development of safety measures.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 June 2022

María Jesús Rosado García and Daniel Crespo Delgado

This work aims to demonstrate the feasibility of fully preserving the historical heritage at the same time reordering the cities and their traffic.

Abstract

Purpose

This work aims to demonstrate the feasibility of fully preserving the historical heritage at the same time reordering the cities and their traffic.

Design/methodology/approach

This paper describes the sustainable solution designed for the landscape change required and to maintain the bridge integrity by excavating under the pier with the maintenance of traffic during its execution.

Findings

It is concluded that the elimination of urban motorways on the surface often leads to the excavation of tunnels under the existing buildings, with little coverage in most of them. This complicates the implementation of burials in cities with an important historical heritage, which must be given conservation priority in the choice of technical solutions.

Originality/value

The Segovia Bridge over the Manzanares River, the oldest bridge in Madrid, was built in the 16th century. With the burial of the M-30 motorway, it has been necessary to build a tunnel immediately under one of the bridge piers, practically without lining between the foundations and the upper slab of the tunnel.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 20 March 2024

Gang Yu, Zhiqiang Li, Ruochen Zeng, Yucong Jin, Min Hu and Vijayan Sugumaran

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due…

49

Abstract

Purpose

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due to limitations in utilizing heterogeneous sensing data and domain knowledge as well as insufficient generalizability resulting from limited data samples. This paper integrates implicit and qualitative expert knowledge into quantifiable values in tunnel condition assessment and proposes a tunnel structure prediction algorithm that augments a state-of-the-art attention-based long short-term memory (LSTM) model with expert rating knowledge to achieve robust prediction results to reasonably allocate maintenance resources.

Design/methodology/approach

Through formalizing domain experts' knowledge into quantitative tunnel condition index (TCI) with analytic hierarchy process (AHP), a fusion approach using sequence smoothing and sliding time window techniques is applied to the TCI and time-series sensing data. By incorporating both sensing data and expert ratings, an attention-based LSTM model is developed to improve prediction accuracy and reduce the uncertainty of structural influencing factors.

Findings

The empirical experiment in Dalian Road Tunnel in Shanghai, China showcases the effectiveness of the proposed method, which can comprehensively evaluate the tunnel structure condition and significantly improve prediction performance.

Originality/value

This study proposes a novel structure condition prediction algorithm that augments a state-of-the-art attention-based LSTM model with expert rating knowledge for robust prediction of structure condition of complex projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 January 2023

Yongliang Deng, Zedong Liu, Liangliang Song, Guodong Ni and Na Xu

The purpose of this study is to identify the causative factors of metro construction safety accidents, analyze the correlation between accidents and causative factors and assist…

Abstract

Purpose

The purpose of this study is to identify the causative factors of metro construction safety accidents, analyze the correlation between accidents and causative factors and assist in developing safety management strategies for improving safety performance in the context of the Chinese construction industry.

Design/methodology/approach

To achieve these objectives, 13 types and 48 causations were determined based on 274 construction safety accidents in China. Then, 204 cause-and-effect relationships among accidents and causations were identified based on data mining. Next, network theory was employed to develop and analyze the metro construction accident causation network (MCACN).

Findings

The topological characteristics of MCACN were obtained, it is both a small-world network and a scale-free network. Controlling critical causative factors can effectively control the occurrence of metro construction accidents. Degree centrality strategy is better than closeness centrality strategy and betweenness centrality strategy.

Research limitations/implications

In practice, it is very difficult to quantitatively identify and determine the importance of different accidents and causative factors. The weights of nodes and edges are failed to be assigned when constructing MCACN.

Practical implications

This study provides a theoretical basis and feasible management reference for construction enterprises in China to control construction risks and reduce safety accidents. More safety resources should be allocated to control critical risks. It is recommended that safety managers implement degree centrality strategy when making safety-related decisions.

Originality/value

This paper establishes the MCACN model based on data mining and network theory, identifies the properties and clarifies the mechanism of metro construction accidents and causations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 September 2023

Pramod Malaka Silva, Niluka Domingo and Noushad Ali Naseem Ameer Ali

The construction industry is complex, human-intensive and driven by monetary values. Hence, disputes are widespread. Initial conflicts among parties may develop into a disastrous…

Abstract

Purpose

The construction industry is complex, human-intensive and driven by monetary values. Hence, disputes are widespread. Initial conflicts among parties may develop into a disastrous dispute that costs the project success and good relationships and affects stakeholders' expectations. There has been a focus on causes of construction-related disputes, and studies over the past three decades have attempted to identify a more comprehensive list of reasons for disputes. Some of these studies' limitations were geographical, project delivery methods and project types. The purpose of this study is to identify the most recent and conclusive list of causes of disputes based on current literature by undertaking a systematic literature review (SLR).

Design/methodology/approach

Considering the large number of studies that focused on causes of disputes, this study aims to develop a comprehensive list of causes, using a SLR, as it ensures that all previous articles in multiple databases are reviewed to produce a comprehensive outcome. A six-stage SLR was followed from background study to analysis and reporting.

Findings

Not surprisingly, the number of publications has increased over time, most from the Middle East region. The interconnected nature of the causes was widely emphasised. The SLR has produced eight common core causes of disputes. They are: poor contractual arrangements, employer-initiated scope changes, unforeseen site changes, poor contract understanding and administration, contractor’s quality of works, the inability of the contractor to achieve time targets, non- or delayed payments and poor quality of design. The majority of previous authors realised that disputes could be avoided by parties’ involvement during the early stages, avoiding being opportunistic and acting collaboratively.

Originality/value

Even though numerous studies have been carried out to identify the causes of disputes in the construction industry, none did a SLR. This study aggregates all the previous studies that focused on construction-related disputes systematically. Categorising causes based on the party primarily responsible help various stakeholders by providing a distinct list of factors to avoid that contribute to disputes.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 27 July 2023

Binchao Deng, Xindong Lv, Yaling Du, Xiaoyu Li and Yilin Yin

Inefficiency dilemmas in project governance are caused by various risks arising from the characteristic of construction supply chain projects, such as poor project performance…

Abstract

Purpose

Inefficiency dilemmas in project governance are caused by various risks arising from the characteristic of construction supply chain projects, such as poor project performance, conflicts between stakeholders and cost overrun. This research aims to establish a fuzzy synthetic evaluation (FSE) model to analyze construction supply chain risk factors. Corresponding risk mitigation strategies are provided to facilitate the improvement performance of ongoing construction supply chain projects.

Design/methodology/approach

A literature review is utilized to reveal the deficiencies of construction supply chain risk management. Thus, a total of five hundred (500) questionnaires are distributed to construction professionals, and four hundred and thirty-five (435) questionnaires are recovered to obtain the evaluation data of construction professionals on critical risk factors. Additionally, the FSE is used to analyze and rank the significance of critical risk factors. Finally, this research discusses nine critical risk factors with high weight in the model, and explains the reason for the significance of critical risk factors in the construction supply chain.

Findings

The questionnaire results show that the thirty-one (31) identified critical risk factors are verified by related practitioners (government departments, universities and research institutions, owners, construction units, financial institutions, design units, consulting firms). Thirty-one (31) identified critical risk factors are divided into common risks, risks from contractors and risks from owners. The most significant factors in the three categories, respectively, are “political risks,” “owner's unprofessional” approach and “cash flow.” Managing these risks can facilitate the development of the construction supply chain.

Originality/value

This paper expands the research perspective of construction supply chain risk management and complements the risks in the construction supply chain. For practitioners, the research result provides some corresponding measures to deal with these risks. For researchers, the research result provides the direction of construction supply chain risk treatment.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 May 2024

Maria Cleofe Giorgino and Federico Barnabè

Drawing motivation from the greater exposure to uncertainty and condition changes that affect large projects due to their long lifecycle, this paper aims to investigate how the…

Abstract

Purpose

Drawing motivation from the greater exposure to uncertainty and condition changes that affect large projects due to their long lifecycle, this paper aims to investigate how the time factor affects the use of governance mechanisms to pursue the success of these projects.

Design/methodology/approach

To pursue its aim, the article applies the dichotomization between the hard and soft mechanisms of project governance to the analysis of a historical case study, whose findings are organized over the short, medium and long periods. The case selected is referred to the peculiar water system, made up of tunnels named “bottini,” that was in use in Siena (Italy) as the old aqueduct. Specifically, the study focuses on the project of expansion of this water system that was realized during the 14th century for the construction of the “Bottino maestro di Fontegaia.”

Findings

This article highlights the different relevance that, during the lifecycle of large projects, is assumed by hard and soft governance mechanisms, with the former having main relevance in a short and medium period, and the latter usually emerging in the medium period and, subsequently, playing a growing role for the project success in the long period.

Originality/value

The article contributes to the literature on large projects by providing novel insights about how the time factor impacts the governance of these projects. Furthermore, the case study, with its unique history, highlights the relevance of combining effectively the hard and the soft dimensions of project governance to pursue success.

Details

Journal of Management History, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 16 October 2023

Dongqiang Cao and Lianhua Cheng

In the evolution process of building construction accidents, there are key nodes of risk change. This paper aims to quickly identify the key nodes and quantitatively assess the…

97

Abstract

Purpose

In the evolution process of building construction accidents, there are key nodes of risk change. This paper aims to quickly identify the key nodes and quantitatively assess the node risk. Furthermore, it is essential to propose risk accumulation assessment method of building construction.

Design/methodology/approach

Authors analyzed 419 accidents investigation reports on building construction. In total, 39 risk factors were identified by accidents analysis. These risk factors were combined with 245 risk evolution chains. Based on those, Gephi software was used to draw the risk evolution network model for building construction. Topological parameters were applied to interpret the risk evolution network characteristic.

Findings

Combining complex network with risk matrix, the standard of quantitative classification of node risk level is formulated. After quantitative analysis of node risk, 7 items of medium-risk node, 3 items of high-risk node and 2 items of higher-risk nodes are determined. The application results show that the system risk of the project is 44.67%, which is the high risk level. It can reflect the actual safety conditions of the project in a more comprehensive way.

Research limitations/implications

This paper determined the level of node risk only using the node degree and risk matrix. In future research, more node topological parameters that could be applied to node risk, such as clustering coefficients, mesoscopic numbers, centrality, PageRank, etc.

Practical implications

This article can quantitatively assess the risk accumulation of building construction. It would help safety managers could clarify the system risk status. Moreover, it also contributes to reveal the correspondence between risk accumulation and accident evolution.

Originality/value

This study comprehensively considers the likelihood, consequences and correlation to assess node risk. Based on this, single-node risk and system risk assessment methods of building construction systems were proposed. It provided a promising method and idea for the risk accumulation assessment method of building construction. Moreover, evolution process of node risk is explained from the perspective of risk accumulation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 192