Search results

1 – 10 of 239
Open Access
Article
Publication date: 8 June 2023

Amer Jazairy, Timo Pohjosenperä, Jaakko Sassali, Jari Juga and Robin von Haartman

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

1727

Abstract

Purpose

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

Design/methodology/approach

Theory of Planned Behavior (TPB) is illustrated in an embedded, single-case study of a Finnish carrier with 17 of its truck drivers. Data are obtained through in-depth interviews with drivers, their fuel-efficiency scores generated by fleet telematics and a focus group session with the management.

Findings

Discrepancies between drivers’ intentions and eco-driving behaviors are illustrated in a two-by-two matrix that classifies drivers into four categories: ideal eco-drivers, wildcards, wannabes and non-eco-drivers. Attitudes, subjective norms and perceived behavioral control are examined for drivers within each category, revealing that drivers’ perceptions did not always align with the reality of their driving.

Research limitations/implications

This study strengthens the utility of TPB through data triangulation while also revealing the theory’s inherent limitations in elucidating the underlying causes of its three antecedents and their impact on the variance in driving behaviors.

Practical implications

Managerial insights are offered to fleet managers and eco-driving solution providers to stipulate the right conditions for drivers to enhance fuel-efficiency outcomes of transport fleets.

Originality/value

This is one of the first studies to give a voice to professional truck drivers about their daily eco-driving practice.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 11
Type: Research Article
ISSN: 0960-0035

Keywords

Open Access
Article
Publication date: 30 June 2008

Wonchang Jang and Ilsoon Shin

One of the distinctive features in Korea and the U.S. trucking industries is the huge difference in the share of owner-operators. While it is around 10~15 percent in the U.S.…

Abstract

One of the distinctive features in Korea and the U.S. trucking industries is the huge difference in the share of owner-operators. While it is around 10~15 percent in the U.S., 80~90% of drivers operate their own truck in Korea. Different from historical explanations of previous researches, this paper deals with this feature theoretically. We examine what brings the difference in asset ownership structures between the Korean and the U.S. trucking industries. Using an analytic framework, we investigate the determinants of truck ownership and the changes in ownership patterns. The model introduces several parameters related to productivities of drivers’ efforts and contractibility to affect drivers’ decision, and values of these parameters in both countries are discussed qualitatively and found to be consistent with the aforementioned characteristics.

Details

Journal of International Logistics and Trade, vol. 6 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 6 September 2019

Mohamed M. Ahmed, Guangchuan Yang, Sherif Gaweesh, Rhonda Young and Fred Kitchener

This paper aims to present a summary of the performance measurement and evaluation plan of the Wyoming connected vehicle (CV) Pilot Deployment Program (WYDOT Pilot).

1592

Abstract

Purpose

This paper aims to present a summary of the performance measurement and evaluation plan of the Wyoming connected vehicle (CV) Pilot Deployment Program (WYDOT Pilot).

Design/methodology/approach

This paper identified 21 specific performance measures as well as approaches to measure the benefits of the WYDOT Pilot. An overview of the expected challenges that might introduce confounding factors to the evaluation effort was outlined in the performance management plan to guide the collection of system performance data.

Findings

This paper presented the data collection approaches and analytical methods that have been established for the real-life deployment of the WYDOT CV applications. Five methodologies for assessing 21 specific performance measures contained within eight performance categories for the operational and safety-related aspects. Analyses were conducted on data collected during the baseline period, and pre-deployment conditions were established for 1 performance measures. Additionally, microsimulation modeling was recommended to aid in evaluating the mobility and safety benefits of the WYDOT CV system, particularly when evaluating system performance under various CV penetration rates and/or CV strategies.

Practical implications

The proposed performance evaluation framework can guide other researchers and practitioners identifying the best performance measures and evaluation methodologies when conducting similar research activities.

Originality/value

To the best of the authors’ knowledge, this is the first research that develops performance measures and evaluation plan for low-volume rural freeway CV system under adverse weather conditions. This paper raised some early insights into how CV technology might achieve the goal of improving safety and mobility and has the potential to guide similar research activities conducted by other agencies.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1677

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 11 April 2018

Wojciech D. Piotrowicz

The purpose of this paper is to investigate humanitarian supply chains in the context of the Ukrainian crisis as example of complex emergency. The paper focuses on a selection of…

4735

Abstract

Purpose

The purpose of this paper is to investigate humanitarian supply chains in the context of the Ukrainian crisis as example of complex emergency. The paper focuses on a selection of support modes: in-kind donations, cash-based assistance and local procurement.

Design/methodology/approach

This paper adopts a case-study approach and interpretive paradigm. Findings are based on the analysis of primary sources including interviews with three Polish humanitarian organizations, internal documents, and secondary sources such as published reports.

Findings

Findings indicate that in a middle-income urbanized country such as Ukraine non-standard modes such as cash transfer programs and local procurement can be employed, since the necessary infrastructure and market are operational. However, each mode has limitations, so they should match the local context and the needs of diverse social groups.

Research limitations/implications

The findings and recommendations are specific to the case analyzed, Ukraine, and its socio-economic context. The research contributes to discussions about mode selection, stressing the links between mode, stage of the disaster response and local context.

Practical implications

Applying cash transfers and local procurement can reduce supply chain costs, such as transport and warehousing. Shortened supply chains enable faster responses and increased agility.

Social implications

Cash transfers and procurement involve the local community and beneficiaries, and can better fulfill needs maintaining people’s dignity. However, for vulnerable groups and those in conflict zones, in-kind goods are a better option.

Originality/value

The author argues that the much-discussed dichotomy of cash or goods does not reflect reality; local and regional procurement should be added as important support modes in middle-income countries in crisis.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 8 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Abstract

Details

Attaining the 2030 Sustainable Development Goal of Gender Equality
Type: Book
ISBN: 978-1-80455-835-5

Open Access
Article
Publication date: 27 July 2022

Ruilin Yu, Yuxin Zhang, Luyao Wang and Xinyi Du

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and…

1264

Abstract

Purpose

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and automated driving systems. However, due to the randomness of human drivers, THW cannot be accurately represented, affecting scholars’ more profound research.

Design/methodology/approach

In this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.

Findings

In this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.

Originality/value

The results show that the proposed model has a 62.7% performance improvement over the distribution model with fixed parameters. Moreover, the parameter function of the distribution model can be regarded as a quantitative analysis of the degree of influence of the traffic flow state on THW.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 31 March 2021

Ruth Banomyong and Thomas E. Fernandez

The purpose of this paper is to assess the logistics performance of national trade corridors in Myanmar based on a theoretical portrayal of multimodal transport in logistics…

Abstract

The purpose of this paper is to assess the logistics performance of national trade corridors in Myanmar based on a theoretical portrayal of multimodal transport in logistics chains combined with the real-time operation of such chains. A cost-time-distance model was used as the core theoretical framework for the discussion. Empirical data related to cost, time and distance was obtained to evaluate national trade corridors in Myanmar. The study explored the performance of trade corridor in the pulses and beans sector from the largest sown and harvest areas to the main seaports in Myanmar. The pulses and beans sector was selected because the country is the 2nd highest exporter in the world and would benefit from improved access to its national seaports. Under the cost-time-distance model used, it was observed that physical infrastructure, institutional environment as well as limited capability of local providers hindered the overall performance of the trade corridors under study.

Details

Journal of International Logistics and Trade, vol. 19 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 23 November 2021

Yueru Xu, Zhirui Ye and Chao Wang

Advanced driving assistance system (ADAS) has been applied in commercial vehicles. This paper aims to evaluate the influence factors of commercial vehicle drivers’ acceptance on…

995

Abstract

Purpose

Advanced driving assistance system (ADAS) has been applied in commercial vehicles. This paper aims to evaluate the influence factors of commercial vehicle drivers’ acceptance on ADAS and explore the characteristics of each key factors. Two most widely used functions, forward collision warning (FCW) and lane departure warning (LDW), were considered in this paper.

Design/methodology/approach

A random forests algorithm was applied to evaluate the influence factors of commercial drivers’ acceptance. ADAS data of 24 commercial vehicles were recorded from 1 November to 21 December 2018, in Jiangsu province. Respond or not was set as dependent variables, while six influence factors were considered.

Findings

The acceptance rate for FCW and LDW systems was 69.52% and 38.76%, respectively. The accuracy of random forests model for FCW and LDW systems is 0.816 and 0.820, respectively. For FCW system, vehicle speed, duration time and warning hour are three key factors. Drivers prefer to respond in a short duration during daytime and low vehicle speed. While for LDW system, duration time, vehicle speed and driver age are three key factors. Older drivers have higher respond probability under higher vehicle speed, and the respond time is longer than FCW system.

Originality/value

Few research studies have focused on the attitudes of commercial vehicle drivers, though commercial vehicle accidents were proved to be more severe than passenger vehicles. The results of this study can help researchers to better understand the behavior of commercial vehicle drivers and make corresponding recommendations for ADAS of commercial vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 6 September 2021

Yujie Li, Tiantian Chen, Sikai Chen and Samuel Labi

The anticipated benefits of connected and autonomous vehicles (CAVs) include safety and mobility enhancement. Small headways between successive vehicles, on one hand, can cause…

Abstract

Purpose

The anticipated benefits of connected and autonomous vehicles (CAVs) include safety and mobility enhancement. Small headways between successive vehicles, on one hand, can cause increased capacity and throughput and thereby improve overall mobility. On the other hand, small headways can cause vehicle occupant discomfort and unsafety. Therefore, in a CAV environment, it is important to determine appropriate headways that offer a good balance between mobility and user safety/comfort.

Design/methodology/approach

In addressing this research question, this study carried out a pilot experiment using a driving simulator equipped with a Level-3 automated driving system, to measure the threshold headways. The Method of Constant Stimuli (MCS) procedure was modified to enable the estimation of two comfort thresholds. The participants (drivers) were placed in three categories (“Cautious,” “Neutral” and “Confident”) and 250 driving tests were carried out for each category. Probit analysis was then used to estimate the threshold headways that differentiate drivers' discomfort and their intention to re-engage the driving tasks.

Findings

The results indicate that “Cautious” drivers tend to be more sensitive to the decrease in headways, and therefore exhibit greater propensity to deactivate the automated driving mode under a longer headway relative to other driver groups. Also, there seems to exist no driver discomfort when the CAV maintains headway up to 5%–9% shorter than the headways they typically adopt. Further reduction in headways tends to cause discomfort to drivers and trigger take over control maneuver.

Research limitations/implications

In future studies, the number of observations could be increased further.

Practical implications

The study findings can help guide specification of user-friendly headways specified in the algorithms used for CAV control, by vehicle manufacturers and technology companies. By measuring and learning from a human driver's perception, AV manufacturers can produce personalized AVs to suit the user's preferences regarding headway. Also, the identified headway thresholds could be applied by practitioners and researchers to update highway lane capacities and passenger-car-equivalents in the autonomous mobility era.

Originality/value

The study represents a pioneering effort and preliminary pilot driving simulator experiment to assess the tradeoffs between comfortable headways versus mobility-enhancing headways in an automated driving environment.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 2
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of 239