Search results

1 – 10 of over 1000
Article
Publication date: 16 January 2017

Dong Wang, Jun Wu, Liping Wang, Yuzhe Liu and Guang Yu

The purpose of this paper is to describe and evaluate the time-varying and coupling dynamic characteristics of a 3-DOF parallel tool head.

Abstract

Purpose

The purpose of this paper is to describe and evaluate the time-varying and coupling dynamic characteristics of a 3-DOF parallel tool head.

Design/methodology/approach

From the view of control, a new dynamic index of a 3-DOF parallel tool head is proposed based on the dynamic model in the joint space. This index can reflect the time-varying and coupling dynamic characteristics which are the main characteristics of the parallel mechanisms, and its distribution in the whole workspace is also given. Through comparison of the dynamic load (driving current) of each driving shaft, a series of experiments is designed and carried out on a prototype to validate the effectiveness of the dynamic analysis. The tracking error of each driving shaft has also been taken into consideration.

Findings

The simulations of the index have the same variation law with the experimental results. The dynamic load of the driving shaft becomes larger with the increase of the dynamic index, and the dynamic performance becomes worse at the same time.

Originality/value

The main dynamic characteristics of the 3-DOF parallel tool head can be described and evaluated through this work.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 September 2018

Ambrish Maurya and Pradeep Kumar Jha

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Abstract

Purpose

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Design/methodology/approach

An un-coupled numerical model for electromagnetic field generation and a coupled numerical model of electromagnetic field and two-phase fluid flow have been developed. The two-phase fluid flow has been modeled using volume of fluid method, in which externally generated time-varying electromagnetic field is coupled and analyzed using magnetohydrodynamic method. Top surface standing wave stability criteria are used to study the criticality of interface stability.

Findings

Results show that application electromagnetic field for stirring increases the interface level fluctuation, specifically at the mold corners and near the submerged entry nozzle. The increase in current intensity and stirrer width barely affect the interface level. However, interface level fluctuation increases considerably with increase in frequency. Using stability criteria, it is found that at 20 Hz frequency, the ratio of height to wavelength of interface wave increases much above the critical value. The iso-surface of the interface level shows that at 20 Hz frequency, mold flux gets entrapped into the liquid steel.

Practical implications

The model may be used during optimization of in-mold electromagnetic stirrer to avoid mold flux entrapment and control the cast quality.

Originality/value

The study of mold level fluctuation in the presence of in-mold electromagnetic stirrer has rarely been reported. The criticality of stirrer process parameters on level fluctuation has not been yet reported. This study lacks in experimental validation; however, the findings will be much useful for the steelmakers to reduce the casting defects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 February 2023

Shengqian Li and Xiaofan Zhang

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to…

Abstract

Purpose

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to compensate. Subsequently, the uncertain external disturbance is estimated and compensated is used an expansion state observer (ESO) in real time, which can reduce the estimating range of observation for ESO. The purpose of this paper is to suggest a novel method to improve the system tracking performance, as well as the dynamic and static performance index.

Design/methodology/approach

A welding robot is a complicated system with uncertainty, time-varying, strong coupling and a nonlinear system; it is more complex as if it is used in an underwater environment, and it is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the conventional proportional integral derivative method to realize automatic tracking of the seam.

Findings

The simulation experiment is carried out by MATLAB/Simulink, and the application experiment is recorded. The experimental results show that the control method is correct and effective, and the system’s tracking performance is stable, and the robustness and tracking accuracy of the system are also improved.

Originality/value

The seam gets plumper and smoother, with better continuity and no undercut phenomenon.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 November 2022

Shengqian Li and Xiaofan Zhang

A welding robot is a complicated system with uncertainty, time-varying, strong coupling and non-linear system. It is more complicated if it is used in an underwater environment…

Abstract

Purpose

A welding robot is a complicated system with uncertainty, time-varying, strong coupling and non-linear system. It is more complicated if it is used in an underwater environment. It is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the classical proportional integral derivative control method to realize automatic tracking of the seam. The purpose of this paper is to suggest a novel method to deal with these issues.

Design/methodology/approach

To combine the advantages of active disturbance rejection control (ADRC) and sliding mode control (SMC) to improve the shortcomings of a single control method, a hybrid control method for an underwater welding robot trajectory tracking based on SMC_ADRC is proposed in this research work.

Findings

The simulation experiment of the proposed approach is carried out by Matlab/Simulink, and the welding experiment is recorded. The seam gets plumper and smoother, with better continuity and no undercut phenomenon.

Originality/value

The proposed approach is effective and reliable, and the system’s tracking performance is stable, which can effectively reduce chattering and improve system robustness.

Article
Publication date: 21 August 2009

Fei Wang, Chengdong Wu, Xinthe Xu and Yunzhou Zhang

The purpose of this paper is to present a coordinated control strategy for stable walking of biped robot with heterogeneous legs (BRHL), which consists of artificial leg (AL) and

Abstract

Purpose

The purpose of this paper is to present a coordinated control strategy for stable walking of biped robot with heterogeneous legs (BRHL), which consists of artificial leg (AL) and intelligent bionic leg (IBL).

Design/methodology/approach

The original concentrated control in common biped robot system is replaced by a master‐slave dual‐leg coordinated control. P‐type open/closed‐loop iterative learning control is used to realize the time‐varying gait tracking for IBL to AL.

Findings

The new control architecture can simplify gait planning scheme of BRHL system with complicated closed‐chain mechanism and mixed driving mode.

Research limitations/implications

Designing and constructing a suitable magneto‐rheological damper can greatly improve the control performance of IBL.

Practical implications

Master‐slave coordination strategy is suitable for BRHL stable walking control.

Originality/value

The concepts and methods of dual‐leg coordination have not been explicitly proposed in single biped robot control research before. Master‐slave coordinated control strategy is suitable for complicated BRHL.

Details

Industrial Robot: An International Journal, vol. 36 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 March 2023

Yang Chen, Yu Luo and Fuchun Sun

This study aims to process multi-agent system with kinds of limitations and constraints, and consider the robot in-hand manipulation as a problem of coordination and cooperation…

Abstract

Purpose

This study aims to process multi-agent system with kinds of limitations and constraints, and consider the robot in-hand manipulation as a problem of coordination and cooperation of multi-fingered hand.

Design/methodology/approach

A cooperative distributed model predictive control (MPC) algorithm is proposed to perform robot in-hand manipulation.

Findings

A cooperative distributed MPC approach is formulated for robot in-hand manipulation problem, which enables address complex limitation and constraint conditions in object motion planning, and realizes tracking trajectory of the object more than tracking position of the object.

Originality/value

This method to implement the moving object task uses the kinematic parameters without the knowledge of dynamic properties of the object. The cooperative distributed MPC scheme is designed to guarantee the movement of the object to a desired position and trajectory at algorithmic level.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 9 May 2022

Guolong Li, Mangmang Gao, Jingjing Yang, Yunlu Wang and Xueming Cao

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the…

Abstract

Purpose

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.

Design/methodology/approach

The track and substructure are decomposed into the rail subsystem and substructure subsystem, in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener. The rail is treated as a continuous beam with elastic discrete point supports, and spring-damping elements are used to simulate the constraints between rail and fastener. Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system, while the external load is used to deal with the reverse effect. The fastener failure is simulated with the methods that cancel the forced vibration transmission, namely take no account of the substructure–rail interaction at that position.

Findings

The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method. Local fastener failure will slightly affect the vibration of substructure and carbody, but it will significantly intensify the vibration response between wheel and rail. The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value, respectively, under the train speed of 350 km·h−1. At the same time, the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%, respectively, from the normal value.

Originality/value

This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 3 October 2022

Xiaofeng Li, Xiaoxue Liu, Xiangwei Li, Weidong He and Hanfei Guo

The purpose of this paper is to propose an improved method which can shorten the calculation time and improve the calculation efficiency under the premise of ensuring the…

Abstract

Purpose

The purpose of this paper is to propose an improved method which can shorten the calculation time and improve the calculation efficiency under the premise of ensuring the calculation accuracy for calculating the response of dynamic systems with periodic time-varying characteristics.

Design/methodology/approach

An improved method is proposed based on Runge–Kutta method according to the composition characteristics of the state space matrix and the external load vector formed by the reduction of the dynamic equation of the periodic time-varying system. The recursive scheme of the holistic matrix of the system using the Runge–Kutta method is improved to be the sub-block matrix that is divided into the upper and lower parts to reduce the calculation steps and the occupied computer memory.

Findings

The calculation time consumption is reduced to a certain extent about 10–35% by changing the synthesis method of the time-varying matrix of the dynamics system, and the method proposed of paper consumes 43–75% less calculation time in total than the original Runge–Kutta method without affecting the calculation accuracy. When the ode45 command that implements the Runge–Kutta method in the MATLAB software used to solve the system dynamics equation include the time variable which cannot provide its specific analytic function form, so the time variable value corresponding to the solution time needs to be determined by the interpolation method, which causes the calculation efficiency of the ode45 command to be substantially reduced.

Originality/value

The proposed method can be applied to solve dynamic systems with periodic time-varying characteristics, and can consume less calculation time than the original Runge–Kutta method without affecting the calculation accuracy, especially the superiority of the improved method of this paper can be better demonstrated when the degree of freedom of the periodic time-varying dynamics system is greater.

Details

Engineering Computations, vol. 39 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 February 2022

Haiming Dai, Guo Xiang, Jiaxu Wang, Juan Guo, Cheng Wang and Hang Jia

The purpose of this study is to numerically investigate the time-varying mixed lubrication performance of microgroove journal-thrust coupled bearing (MJTCB) under nonlinear…

Abstract

Purpose

The purpose of this study is to numerically investigate the time-varying mixed lubrication performance of microgroove journal-thrust coupled bearing (MJTCB) under nonlinear excitation.

Design/methodology/approach

A three degree of freedom (3-DOF) dynamic model of the rotor coupling with the transient mixed lubrication behavior is established. Based on numerical predictions, the role of the microgroove on the time-varying mixed lubrication performance of MJTCB is identified. The effects of the microgroove depth, microgroove shape and external load on the time-varying mixed lubrication performance of MJTCB are also studied.

Findings

Numerical results show that the effect of the coupling hydrodynamic on the time-varying mixed lubrication performance of the coupled bearing is strengthen with the increasing of microgroove depth. Furthermore, it is found that the optimal microgroove shape for the thrust bearing, arc or rectangle, highly depends on the microgroove depth. Finally, the contact performance of the thrust bearing is slightly affected by the radial external load.

Originality/value

This study is expected to achieve a better understanding of the time-varying mixed lubrication performance of MJTCB under nonlinear excitations.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 April 2022

Yan Liang, Yingying Wei, Panjie Li, Huan Niu and Jingxiao Shu

Although mechanical behavior of rigid frame pier has been clearly recognized, their time-varying seismic performance are yet to be well characterized due to some offshore piers…

Abstract

Purpose

Although mechanical behavior of rigid frame pier has been clearly recognized, their time-varying seismic performance are yet to be well characterized due to some offshore piers that are eroded by chloride ion and located in earthquake-prone area. In this study, the time-variant seismic fragility analysis was conducted to evaluate seismic performance of rigid frame pier under four damage states with considering the time-varying characteristics of the material.

Design/methodology/approach

This paper establishes the nonlinear finite element model for the investigated offshore reinforcement concrete (RC) pier with considering the time-varying durability damage of the materials and defines the damage state, damage position and damaged index of the offshore RC pier. It also analyzes the time-varying seismic fragility of the offshore RC pier by using the capacity demand ratio method in the whole life cycle.

Findings

The results show that chloride induced corrosion has a significant effect on the rigid frame pier and bending capacity of top section is less than that of bottom section. The rate of decline accelerates after the service life reaching 30 years under the coupling of the earthquake and the environmental erosion. In the early years of service, the seismic fragility of the structure changed slowly.

Originality/value

This paper analyzes the influencing factors of seismic performance of rigid structure pier, and analyzes the seismic capacity and seismic performance of rigid structure pier under different service periods.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000