Search results

1 – 10 of 26
Article
Publication date: 20 April 2020

Ananthan Nagarajan, Sivachandran P., Suganyadevi M.V. and Muthukumar P.

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Abstract

Purpose

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Design/methodology/approach

The work carried out in the Facts device and power quality issues.

Findings

Maintaining the quality of electric power is always a challenging task. The effect of power electronics devices leads to improper power quality. The use of FACTS devices is preferably the best approach to treat power-quality-related problems. Usually, all FACTS devices are constructed to operate on the side of either the source side or the load.

Originality/value

This paper explores a broad comprehensive study of various types of power quality problems and classification of FACTS devices with its recent developments. Furthermore unified power quality conditioner (UPQC) is particularly reviewed to highlight the advantages over other compensating devices. An exhaustive study of literature has been carried out and most significant concepts are presented

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 April 2023

Sebi Neelamkavil Pappachan

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of…

Abstract

Purpose

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of flexible AC transmission systems (FACTS) devices. Here, the speed with fitness-based krill herd algorithm (SF-KHA) is adopted for deciding the FACTS devices’ optimal sizing and placement integrated with wind power. Here, the modified SF-KHA optimizes the sizing and location of FACTS devices for attaining the minimum average production cost and real power depletions of the system. Especially, the objective includes reserve cost for overestimation, cost of thermal generation of the wind power, direct cost of scheduled wind power and penalty cost for underestimation. The efficiency of the offered method over several popular optimization algorithms has been done, and the comparison over different algorithms establishes proposed KHA algorithm attains the accurate optimal efficiency for all other algorithms.

Design/methodology/approach

The proposed FACTS devices-based power system with the integration of wind generators is based on the accurate placement and sizing of FACTS devices for decreasing the actual power loss and total production cost of the power system.

Findings

Through the cost function evaluation of the offered SF-KHA, it was noted that the proposed SF-KHA-based power system had secured 13.04% superior to success history-based adaptive differential evolution, 9.09% enhanced than differential evolution, 11.5% better than artificial bee colony algorithm, 15.2% superior to particle swarm optimization and 9.09% improved than flower pollination algorithm.

Originality/value

The proposed power system with the accurate placement and sizing of FACTS devices and wind generator using the suggested SF-KHA was effective when compared with the conventional algorithm-based power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2002

Y.J. Lin and K.L. Lo

This paper develops a proportional plus derivative (PD) control scheme for a thyristor controlled series compensator (TCSC) to reinforce power system damping performance. This PD…

Abstract

This paper develops a proportional plus derivative (PD) control scheme for a thyristor controlled series compensator (TCSC) to reinforce power system damping performance. This PD control scheme is aided by the use of genetic algorithms (GAs). The effectiveness of the proposed method is demonstrated through computer simulation using a multi‐machine power system associated with a single TCSC. Results show that the proposed PD controller can achieve good damping performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Faruk Yalçın

The purpose of this paper is to propose a voltage regulation solution in power systems through adjusting the power flow of the system via thyristor controlled series compensator

Abstract

Purpose

The purpose of this paper is to propose a voltage regulation solution in power systems through adjusting the power flow of the system via thyristor controlled series compensator (TCSC). For this aim, a new power flow model has been proposed based on TCSC.

Design/methodology/approach

TCSC’s admittance effect has been included as state variable into the Jacobian matrix to avoid divergence problem. TCSC’s admittance is ignored in the bus admittance matrix to prevent rebuilding requirement of the bus admittance matrix in each power flow iteration. So, faster convergence for power flow calculation has been provided. For this aim, new power equations have been obtained. Also, the proposed approach has not required to handle each terminal of TCSC as an individual bus in the power flow calculation. So, increasing of the Jacobian and bus admittance matrixes caused by the total bus number has been prevented.

Findings

The proposed approach has been tested on IEEE 57-bus test system. The obtained results have proved that the proposed approach has provided efficient, reliable and fast convergence.

Originality/value

This study is the first one that uses TCSC for voltage regulation in the literature. On the other hand, the results have shown that the approach of considering the TCSC admittance values as state variables provides robust convergence, according to the approaches that consider TCSC firing angles as state variables.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 May 2008

Laiq Khan, Tariq Saeed and K.L. Lo

Modern power systems suffer from a well‐known problem of low‐frequency oscillations. Flexible AC transmission systems devices are used to overcome this problem. The aim of this…

Abstract

Purpose

Modern power systems suffer from a well‐known problem of low‐frequency oscillations. Flexible AC transmission systems devices are used to overcome this problem. The aim of this paper is to develop a particle swarm optimization (PSO) based supplementary damping control system design for thyristor control series compensator (TCSC).

Design/methodology/approach

The problem is formulated as an optimization problem with an eigenvalue‐based multi‐objective function. PSO is then used to find optimal set of controller parameters by minimizing the objective function.

Findings

The performance and robustness of the proposed approach is validated through small signal and large signal for different loading conditions of a multi‐machine power system.

Originality/value

The paper presents a novel PSO‐based control system design that exhibits robustness and excellent damping performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Sekharan Sreejith and Sishaj P. Simon

The aim of this paper is to compare the performance of static VAR compensator (SVC) and unified power flow controller (UPFC) in dynamic economic dispatch (DED) problem. DED…

Abstract

Purpose

The aim of this paper is to compare the performance of static VAR compensator (SVC) and unified power flow controller (UPFC) in dynamic economic dispatch (DED) problem. DED schedules the online generator outputs with the predicted load demands over a certain period so that the electric power system is operated most economically. During last decade, flexible alternating current transmission systems (FACTS) devices are broadly used for maximizing the loadability of existing power system transmission networks. However, based on the literature survey, the performance of SVC and UPFC incorporated in the DED problem and its cost–benefit analysis are not discussed earlier in any of the literature.

Design/methodology/approach

Here, the DED problem is solved applying ABC algorithm incorporating SVC and UPFC. The following conditions are investigated with the incorporation of SVC and UPFC into DED problem: the role of SVC and UPFC for improving the power flow and voltage profile and the approximate analysis on cost recovery and payback period with SVC and UPFC in DED problem.

Findings

The incorporation of FACTS devices reduces the generation cost and improves the stability of the system. The percentage cost recovered with FACTS devices is estimated approximately using equated monthly installment (EMI) and non-EMI scheme. It is clear from the illustrations that the installation of FACTS devices is profitable after a certain period.

Research limitations/implications

In this research work, the generation cost with FACTS devices is only taken into account while calculating the profit. The other benefits like congestion management, cost gained due to land and cost due to stability issues are not considered. For future work, these things can be considered while calculating the benefit.

Originality/value

The originality of the work is incorporation of FACTS devices in DED problem and approximate estimation of recovery cost with FACTS devices in DED problem.

Details

International Journal of Energy Sector Management, vol. 8 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 5 September 2016

Uma Velayutham, Lakshmi Ponnusamy and Gomathi Venugopal

The purpose of this paper is to optimally locate and size the FACTS device, namely, interline power flow controller in order to minimize the total cost and relieve congestion in a…

Abstract

Purpose

The purpose of this paper is to optimally locate and size the FACTS device, namely, interline power flow controller in order to minimize the total cost and relieve congestion in a power system. This security analysis helps independent system operator (ISO) to have a better planning and market clearing criteria during any operating state of the system.

Design/methodology/approach

A multi-objective optimization problem has been developed including real power performance index (RPPI) and expected security cost (ESC). A security constrained optimal power flow has been developed as expected security cost optimal power flow problem which gives the probabilities of operating the system in all possible pre-contingency and post-contingency states subjected to various equality and inequality constraints. Maximizing social welfare is the objective function considered for normal state, while minimizing compensations for generations rescheduling and maximizing social welfare are the objectives in case of contingency states. The proposed work is viewed as a two level problem wherein the upper-level problem is to optimally locate IPFC using RPPI and the lower-level problem is to minimize the ESC subjected to various system constraints. Both upper-level and lower-level problem are solved using particle swarm optimization and The performance of the proposed algorithm is tested under severe line outages and has been validated using IEEE 30 bus system.

Findings

The proposed methodology shows that IPFC controls the power flows in the network without generation rescheduling or topological changes and thus improves the performance of the system. It is found that the benefit achieved in the ESC due to the installation of IPFC is greater than the annual investment cost of the device. ISO cannot achieve minimum total system cost by merely rescheduling generators. Instead of rescheduling, FACTS devices can be used for compensation by achieving minimum cost. IPFC can be used to compensate the congested lines and transfer cheaper power from generators to consumers.

Originality/value

Operational reliability, financial profitability and efficient utilization of the existing transmission system infrastructure has been achieved using single FACTS device. Instead of using multiple FATCS devices, if a single FACTS device like IPFC which itself can compensate several transmission lines is used, then in addition to the facility for independently controlled reactive (series) compensation of each individual line, it provides a capability to directly transfer real power between the compensated lines. Hence an attempt has been made in this paper to incorporate IPFC for relieving congestion in a deregulated environment. However, no previous researches have considered incorporating compensation of multi-transmission line using single IPFC in minimizing ESC. Thus, in this paper, the authors indicate how much the ESC is reduced by installing IPFC.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Naraina Avudayappan and S.N. Deepa

The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During…

229

Abstract

Purpose

The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During such unconditional state of loading the transmission line parameters and the line voltages show a substandard profile, which depicts exaction of congestion management of the power line in such events. The purpose of this paper is to present an uncomplicated and economical model for congestion management using flexible AC transmission system (FACTS) devices.

Design/methodology/approach

The approach desires a two-step procedure, first by optimal placement of thyristor controlled series capacitor (TCSC) and static VAR compensator (SVC) as FACTS devices in the network; second tuning the control parameters to their optimized values. The optimal location and tuning of TCSC and SVC represents a hectic optimization problem, due to its multi-objective and constrained nature. Hence, a reassuring heuristic optimization algorithm inspired by behavior of cat and firefly is employed to find the optimal placement and tuning of TCSC and SVC.

Findings

The effectiveness of the proposed model is tested through simulation on standard IEEE 14-bus system. The proposed approach proves to be better than the earlier existing approaches in the literature.

Research limitations/implications

With the completed simulation and results, it is proved that the proposed scheme has reduced the congestion in line, thereby increasing the voltage stability along with improved loading capability for the congested lines.

Practical implications

The usefulness of the proposed scheme is justified with the computed results, giving convenience for implementation to any practical transmission network.

Originality/value

This paper fulfills an identified need to study exaction of congestion management of the power line.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 July 2022

Yumei Song, Jianzhang Hao, Changhao Dong, Xizheng Guo and Li Wang

This paper aims to study a multi-level reinjection current source converter (MLR-CSC) that adds attracting properties such as the self-commutation and pulse multiplication to the…

Abstract

Purpose

This paper aims to study a multi-level reinjection current source converter (MLR-CSC) that adds attracting properties such as the self-commutation and pulse multiplication to the thyristor converter, which is of great significance for increasing the device capacity and reducing current harmonics on the grid side. Particularly, designing advantageous driving methods of the reinjection circuit is a critical issue that impacts the harmonic reduction and operation reliability of the MLR-CSC.

Design/methodology/approach

To deal with the mentioned issue, this paper takes the five-level reinjection current source converter (FLR-CSC), which is a type of the MLR-CSC, as the research object. Then, a method that can fully use combinations of five-level reinjection switching functions based on the concept of decomposition and recombination is proposed. It is worthy to mention that the proposed method can be easily extended to other multi-level reinjection circuits. Moreover, the working principle of the three-phase bridge circuit based on semi-controlled thyristors in the FLR-CSC that can achieve the four-quadrant power conversion is analyzed in detail.

Findings

Finally, the simulation and experimental results of FLR-CSC verify the effectiveness of the proposed reinjection circuit driving method and the operating principle of four-quadrant power conversion in this paper.

Originality/value

The outstanding features of the proposed driving method for FLR-CSC in this paper include combinations of reinjection switching functions that are fully exploited through three simple steps and can be conveniently extended to other multi-level reinjection circuits.

Details

Microelectronics International, vol. 40 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 December 2001

Michal Gwóźdź, Ryszard Porada and Leszek Fraockowiak

Presents a system capable of achieving optimal compensation (in real time) by elimination of differential current and employing power electronic controlled current sources. The…

Abstract

Presents a system capable of achieving optimal compensation (in real time) by elimination of differential current and employing power electronic controlled current sources. The functional block diagram and a description of the working principle are included. Simulation tests were carried out on current source and active compensation system. The results of simulation and experimental tests of prototype model of controlled current source and compensator confirm a considerable reduction of source current distortion at strong distortions of voltage and current of receiver, a fast response to step changes of load and good stability of its work.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 26