Search results

1 – 10 of 139
Article
Publication date: 1 October 2018

Anoop Vasu, Jerry Chung, Cory Padfield and Ravi Desai

The brake reaction test performed on a rear axle assembly revealed that the brake flange weld could not sustain the load needed to pass the minimum requirement of the test…

Abstract

Purpose

The brake reaction test performed on a rear axle assembly revealed that the brake flange weld could not sustain the load needed to pass the minimum requirement of the test. Evaluation of the failure mode indicated that the fracture of the weld originated at the root of the weld and cracked through the fusion zone of the weld instead of cracking through base material (toe failure). The paper aims to discuss these issues.

Design/methodology/approach

A computational methodology is presented to quantify the critical parameters to prevent throat failure. The torsion dominated loading created high in-plane shear stress on the weld which can contribute significantly to the premature failure.

Findings

The failure through the fusion zone, often termed as weld throat/root failure, was not accounted for during the design phase by numerical simulation which led to the wrong conclusion that the design will pass the test requirement. Although weld sizing and weld penetration depth can explain such unexpected failure modes, fatigue life of this particular failure was still over-predicted using the Master SN curve formulation of structural stress approach which is well established for Mode I type of failure. Accounting for the shear component in the structural stress approach led to good correlation with the test specimen. Weld throat depth is a significant parameter contributing to throat failure.

Practical implications

The failure of the weld joining the brake flange and the tube of an axle is a high severity failure mode which can result in loss of vehicle control and injury or death and hence the failure should be prevented at any cost.

Originality/value

Most of the previous work of welded components relates to Mode I loading. There is very few research performed to discuss the Mode III loading and failure. This research illustrates the importance of considering the throat failure mode and quantifies the weld parameters to prevent such failures in design applications.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 January 2021

Saba Gharehdash, Bre-Anne Louise Sainsbury, Milad Barzegar, Igor B. Palymskiy and Pavel A. Fomin

This research study aims to develop regular cylindrical pore network models (RCPNMs) to calculate topology and geometry properties of explosively created fractures along with…

253

Abstract

Purpose

This research study aims to develop regular cylindrical pore network models (RCPNMs) to calculate topology and geometry properties of explosively created fractures along with their resulting hydraulic permeability. The focus of the investigation is to define a method that generates a valid geometric and topologic representation from a computational modelling point of view for explosion-generated fractures in rocks. In particular, extraction of geometries from experimentally validated Eulerian smoothed particle hydrodynamics (ESPH) approach, to avoid restrictions for image-based computational methods.

Design/methodology/approach

Three-dimensional stabilized ESPH solution is required to model explosively created fracture networks, and the accuracy of developed ESPH is qualitatively and quantitatively examined against experimental observations for both peak detonation pressures and crack density estimations. SPH simulation domain is segmented to void and solid spaces using a graphical user interface, and the void space of blasted rocks is represented by a regular lattice of spherical pores connected by cylindrical throats. Results produced by the RCPNMs are compared to three pore network extraction algorithms. Thereby, once the accuracy of RCPNMs is confirmed, the absolute permeability of fracture networks is calculated.

Findings

The results obtained with RCPNMs method were compared with three pore network extraction algorithms and computational fluid dynamics method, achieving a more computational efficiency regarding to CPU cost and a better geometry and topology relationship identification, in all the cases studied. Furthermore, a reliable topology data that does not have image-based pore network limitations, and the effect of topological disorder on the computed absolute permeability is minor. However, further research is necessary to improve the interpretation of real pore systems for explosively created fracture networks.

Practical implications

Although only laboratory cylindrical rock specimens were tested in the computational examples, the developed approaches are applicable for field scale and complex pore network grids with arbitrary shapes.

Originality/value

It is often desirable to develop an integrated computational method for hydraulic conductivity of explosively created fracture networks which segmentation of fracture networks is not restricted to X-ray images, particularly when topologic and geometric modellings are the crucial parts. This research study provides insight to the reliable computational methods and pore network extraction algorithm selection processes, as well as defining a practical framework for generating reliable topological and geometrical data in a Eulerian SPH setting.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 April 2018

Franciszek Hasiuk, Sergey Ishutov and Artur Pacyga

The purpose of this study is to evaluate how accurately a 3D printer could manufacture basic porous models. Geoscience research is evolving toward numerical prediction of porous…

Abstract

Purpose

The purpose of this study is to evaluate how accurately a 3D printer could manufacture basic porous models. Geoscience research is evolving toward numerical prediction of porous rock properties, but laboratory tests are still considered a standard practice. 3D printing digital designs of porous models (proxies) is a way to bridge the gap between these two realms of inquiry.

Design/methodology/approach

Digital designs of simple porous models have been 3D-printed on an inkjet-style (polyjet) 3D printer. Porosity and pore-throat size distribution of proxies have been measured with helium porosimetry, mercury porosimetry and computed tomography (CT) image analysis. Laboratory results on proxies have been compared with properties calculated on digital designs and CT images.

Findings

Bulk volume of proxies was by 0.6-6.7 per cent lower than digital designs. 3D-printed porosity increased from 0.2 to 1.9 per cent compared to digital designs (0-1.3 per cent). 3D-printed pore throats were thinner than designed by 10-31 per cent.

Research limitations/implications

Incomplete removal of support material from pores yielded inaccurate property measurements. The external envelope of proxies has been 3D-printed at higher accuracy than pores.

Practical implications

Characterization of these simple models improves understanding of how more complex rock models can be 3D-printed accurately and how both destructive (mercury porosimetry) and non-destructive (CT and helium porosimetry) methods can be used to characterize porous models.

Originality/value

Validation of 3D-printed porous models using a suite of destructive and non-destructive methods is novel.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 October 2019

Zhi Guo, Zhongde Shan, Feng Liu, Dong Du and Mengmeng Zhao

In this paper, the effects of the adhesive and curing agent contents on the tensile strength, bending strength, gas evolution and gas permeability of three-dimensional printed…

Abstract

Purpose

In this paper, the effects of the adhesive and curing agent contents on the tensile strength, bending strength, gas evolution and gas permeability of three-dimensional printed sand molds are studied. A strength model of the three-dimensional printed sand molds is proposed. The multi-material composite sand mold forming test is carried out. In addition, the mesostructure of the sand mold is studied.

Design/methodology/approach

The performances of three-dimensional printed sand mold such as tensile strength, bending strength, gas evolution and gas permeability are studied using the standard test methods. The mesostructure of the sand mold is studied by digital core technology.

Findings

A sand mold strength model based on the resin adhesive content, curing agent content and sand mold compactness are obtained. Two types of multi-material composite three-dimensional printed sand molds are proposed. An increase in the curing agent content in the sand mold widens the mesoscopic characteristic size distribution of the sand mold, and large-sized mesostructures appear, resulting in a decrease in the sand mold bearing capacity.

Practical implications

Process parameters that affect the performance of three-dimensional printed sand mold are revealed. The sand mold bearing curve provides a reference for the ultimate design of three-dimensional printed sand mold.

Originality/value

The paper deals with experimental work on the performance and mesostructure of multi-material composite three-dimensional printed sand mold with different contents of adhesive and curing agent. That gives a perspective on future designs of sand mold based on these principles.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 23 January 2024

Wang Zengqing, Zheng Yu Xie and Jiang Yiling

With the rapid development of railway-intelligent video technology, scene understanding is becoming more and more important. Semantic segmentation is a major part of scene…

Abstract

Purpose

With the rapid development of railway-intelligent video technology, scene understanding is becoming more and more important. Semantic segmentation is a major part of scene understanding. There is an urgent need for an algorithm with high accuracy and real-time to meet the current railway requirements for railway identification. In response to this demand, this paper aims to explore a variety of models, accurately locate and segment important railway signs based on the improved SegNeXt algorithm, supplement the railway safety protection system and improve the intelligent level of railway safety protection.

Design/methodology/approach

This paper studies the performance of existing models on RailSem19 and explores the defects of each model through performance so as to further explore an algorithm model dedicated to railway semantic segmentation. In this paper, the authors explore the optimal solution of SegNeXt model for railway scenes and achieve the purpose of this paper by improving the encoder and decoder structure.

Findings

This paper proposes an improved SegNeXt algorithm: first, it explores the performance of various models on railways, studies the problems of semantic segmentation on railways and then analyzes the specific problems. On the basis of retaining the original excellent MSCAN encoder of SegNeXt, multiscale information fusion is used to further extract detailed features such as multihead attention and mask, solving the problem of inaccurate segmentation of current objects by the original SegNeXt algorithm. The improved algorithm is of great significance for the segmentation and recognition of railway signs.

Research limitations/implications

The model constructed in this paper has advantages in the feature segmentation of distant small objects, but it still has the problem of segmentation fracture for the railway, which is not completely segmented. In addition, in the throat area, due to the complexity of the railway, the segmentation results are not accurate.

Social implications

The identification and segmentation of railway signs based on the improved SegNeXt algorithm in this paper is of great significance for the understanding of existing railway scenes, which can greatly improve the classification and recognition ability of railway small object features and can greatly improve the degree of railway security.

Originality/value

This article introduces an enhanced version of the SegNeXt algorithm, which aims to improve the accuracy of semantic segmentation on railways. The study begins by investigating the performance of different models in railway scenarios and identifying the challenges associated with semantic segmentation on this particular domain. To address these challenges, the proposed approach builds upon the strong foundation of the original SegNeXt algorithm, leveraging techniques such as multi-scale information fusion, multi-head attention, and masking to extract finer details and enhance feature representation. By doing so, the improved algorithm effectively resolves the issue of inaccurate object segmentation encountered in the original SegNeXt algorithm. This advancement holds significant importance for the accurate recognition and segmentation of railway signage.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 21 March 2023

Sheng Chen, Suming Xie, Tao Li and Jian Wang

This study aims to extend the application of the quality category approach in rapid fatigue assessment of complex welded structures containing defects under arbitrary loadings…

Abstract

Purpose

This study aims to extend the application of the quality category approach in rapid fatigue assessment of complex welded structures containing defects under arbitrary loadings, following the investigation of their core data and fatigue assessment procedures based on fracture mechanics.

Design/methodology/approach

The analysis methods and procedures for calculating equivalent sizes of semi-elliptic cracks and initial sizes of through-width cracks at the weld toe were developed based on the life equivalence principle. Different stress concentration solutions, i.e. 2D-Mk and 3D-Mk solutions, and different bending ratios were considered. Then, approximate equations were proposed to calculate the crack size under combined stress. In addition, a procedure for calculating the fatigue life by interpolation was proposed and applied to engineering examples.

Findings

The fatigue lives of fillet and butt weld joints obtained with the 3D-Mk solution for large L/B are longer than those obtained with the 2D-Mk solution. The results of the fatigue life of the brake unit bracket show that the average error between the proposed approximation equations and the quality category approach is 1.6%.

Originality/value

The quality category and equivalent size curves of different stress concentration solutions under combined membrane and bending stresses are newly added, which further expands the application of the quality category approach. When the proposed fatigue life calculation methods are employed, the remaining life can be quickly derived in addition to the qualitative conclusion on the safety of the structure. These provide the necessary conditions to perform a rapid fatigue assessment adapted to engineering purposes.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 August 2013

Xi Yang, Hejun Li, Shouyang Zhang, Kuahai Yu and Zhi Wang

This paper aims to review the research status of fatigue behavior and fracture mechanism for C/C composites.

587

Abstract

Purpose

This paper aims to review the research status of fatigue behavior and fracture mechanism for C/C composites.

Design/methodology/approach

The fatigue behavior is related to many factors. The mechanical and physical properties were compared to evaluate the effect of fatigue under various experimental conditions, including different load type, loading frequency and stress ratio. Special attention is put on the high‐temperature fatigue research.

Findings

The strength has improved by fatigue loading. And most researchers considered that the weaken interface was the main reason for fatigue enhancement. However, the research on high‐temperature fatigue behavior is especially scarce.

Originality/value

This review provides a guideline on the current and future research on fatigue behavior of C/C composites.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 February 2019

Adam Wisniewski, Maciej Malicki and Wojciech Manaj

This paper aims to enhance the selection of the best material of the rocket engine combustion chamber. The chamber has been destroyed during dynamometer tests, and the goal of…

Abstract

Purpose

This paper aims to enhance the selection of the best material of the rocket engine combustion chamber. The chamber has been destroyed during dynamometer tests, and the goal of this inspection is to verify the nature of the damage in the context of checking the usefulness of this type of graphite for the combustion chamber construction.

Design/methodology/approach

This paper presents the results of visual and microscopic inspection of the rocket engine combustion chamber of Ø50 × 165 mm in dimension, which was made of R type graphite.

Findings

An analysis of the fracture surface shows that in the inspected combustion chamber voids and inclusions are present. EDS analysis of the fracture surface shows that in the inspected combustion chamber inclusions are present which have a relatively high amount of elements like: Ti, C, S, V, Si, O and a relatively small amount of Fe and Ni.

Research limitations/implications

Research limitations is concerned the failure analysis by a scanning electron microscope (SEM) Zeiss EVO 25 MA with EDS detector: Brüker X Flash Detector 5010 125 eV and Espirit 1.9.0.2176 EDS software.

Practical implications

Designing of the engine combustion chamber the researches can select the best of the rocket engine combustion chamber, made of R type graphite, with the minimum voids and inclusions to decrease the possibility of bursting of this chamber.

Originality/value

The most dangerous issues in the inspected combustion chamber during an outflow are hot gases as a result of high fuel combustion temperature, so it causes the nozzle heating and the engine stress increase of visible inclusions in cross-sections.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 December 1955

I. Carl Romer and AH B.S. Bulent Cambel.

In this paper the isothermal flow of perfect gases is discussed following the gas dynamic approach of applying the continuity, momentum and energy equations. Flow functions for…

Abstract

In this paper the isothermal flow of perfect gases is discussed following the gas dynamic approach of applying the continuity, momentum and energy equations. Flow functions for isothermal, reversible, one‐dimen‐sional flow are derived and these are represented graphically. Isothermal flow in convergent‐divergent nozzles is analysed and the variation of the derived flow functions is depicted.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 September 2014

Morgan Dundu

– The purpose of this paper is an experimental investigation to determine the effects of defects on the strength of welds.

Abstract

Purpose

The purpose of this paper is an experimental investigation to determine the effects of defects on the strength of welds.

Design/methodology/approach

This investigation was carried out using butt- and fillet-welded specimens in tension. Several welding skills were incorporated into the investigation so as to come up with different types of defects. Half of the samples were welded flat and the other half, vertical.

Findings

Vertical welding resulted in a greater percentage of defects than flat welding. Most of the defects in the welds were a result of incomplete penetration, lack of fusion, slag inclusion, porosity and failure to weld to the given dimensions. The tests show that there is a linear relationship between the area of defects and the ultimate capacity of the joints.

Originality/value

Although the purpose of this research was to determine the effect of defects on the strengths of both butt and fillet welds, more attention was focused on fillet welds, as this investigation had not been carried out before. Fillet welds experience shear only, unlike butt welds which can either be in tension or shear, or, in rare cases, a combination of the two.

Details

Journal of Engineering, Design and Technology, vol. 12 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 139