Search results

1 – 10 of 163
Article
Publication date: 2 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested…

Abstract

Purpose

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested and reported. The purpose of this paper is suggesting thin film-based TIM to sustain the light-emiting diode (LED) performance and electronic device miniaturization.

Design/methodology/approach

Consequently, ZnO thin film at various thicknesses was prepared by chemical vapour deposition (CVD) method and tested their thermal behaviour using thermal transient analysis as solid TIM for high-power LED.

Findings

Low value in total thermal resistance (Rth-tot) was observed for ZnO thin film boundary condition than bare Al boundary condition. The measured interface (ZnO thin film) resistance {(Rth-bhs) thermal resistance of the interface layer (thin film) placed between metal core printed circuit board (MCPCB) board and Al substrates} was nearly equal to Ag paste boundary condition and showed low values for ZnO film prepared at 30 min process time measured at 700 mA. The TJ value of LED mounted on ZnO thin film (prepared at 30 min.) coated Al substrates was measured to be 74.8°C. High value in junction temperature difference (ΔTJ) of about 4.7°C was noticed with 30 min processed ZnO thin film when compared with Al boundary condition. Low correlated colour temperature and high luminous flux values of tested LED were also observed with ZnO thin film boundary condition (processed at 30 min) compared with both Al substrate and Ag paste boundary condition.

Originality/value

Overall, 30 min CVD processed ZnO thin film would be an alternative for commercial TIM to achieve efficient thermal management. This will increase the life span of the LED as the proposed material decreases the TJ values.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 November 2023

Huda Abdullah, Norshafadzila Mohammad Naim, Kok Seng Shum, Aidil Abdul Hamid, Mohd Hafiz Dzarfan Othman, Vidhya Selvanathan, Wing Fen Yap and Seri Mastura Mustaza

Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast…

Abstract

Purpose

Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast, sensitive and economically viable solution for E. coli enumeration. This paper reported a prototype amperometric sensor based on PANI-ZnO-NiO nanocomposite thin films prepared by sol–gel method and irradiated with gamma ray. The purpose of this study is to investigate the sensor performance of PANI-ZnO-NiO nanocomposite thin films to detect E. coli in water.

Design/methodology/approach

The films were varied with different compositions of ZnO and NiO by using the formula PANI-(ZnO)1-x-(NiO)x, with x = 0.2, 0.4, 0.6 and 0.8. PANI-ZnO-NiO nanocomposite thin films were characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM) to study the crystallinity and surface morphology of the films. The sensor performance was conducted using the current–voltage (I-V) measurement by testing the films in clean water and E. coli solution.

Findings

XRD diffractograms show the peaks of ZnO (1 0 0) and NiO (1 0 2). AFM analysis shows the surface roughness, and the grain size of PANI-ZnO-NiO thin films decreases when the concentration ratios of NiO increased. I-V curves show the difference in current flow, where the current in E. coli solution is higher than the clean water.

Originality/value

PANI-(ZnO)1-x-(NiO)x nanocomposite thin film with the highest concentration of ZnO performed the highest sensitivity among the other concentrations, which can be used to indicate the presence of E. coli bacteria in water.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 February 2024

Bassem Assfour, Bassam Abdallah, Hour Krajian, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the…

Abstract

Purpose

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the direct current (DC) magnetron sputtering technique.

Design/methodology/approach

DC sputtering at different powers – 80, 100 and 120 W – was used to deposit ZrO2 thin films onto different substrates (Si/SS304) without annealing of the substrate. Atomic force microscope (AFM), energy-dispersive X-ray spectroscopy (EDS), Tafel extrapolation and contact angle techniques were applied to investigate the surface roughness, chemical compositions, corrosion behavior and hydrophobicity of these films.

Findings

Results showed that the thickness of the deposited film increased with power increase, while the corrosion current decreased with power increase. AFM images indicated that the surface roughness decreased with an increase in DC power. EDS analysis showed that the thin film has a stoichiometric ZrO2 (Zr:O 1:2) composition with basic uniformity. Water contact angle measurements indicated that the hydrophobicity of the synthesized films decreased with an increase in surface roughness.

Originality/value

DC magnetron sputtering technique is infrequently used to deposition thin films. The obtained thin films showed good hydrophobic and anticorrosion properties. Finally, results are compared with other deposition techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 October 2023

Usama Afzal, Kanza Maryam, Fatima Afzal and Muhammad Aslam

The purpose of this study is to fabricate a highly sensitive humidity sensor for observing the humidity effect on a robot’s body as an application of the Internet of Things. The…

Abstract

Purpose

The purpose of this study is to fabricate a highly sensitive humidity sensor for observing the humidity effect on a robot’s body as an application of the Internet of Things. The sensor has been fabricated by depositing a thin sensing layer of nickel phthalocyanine (NiPc) between two silver electrodes.

Design/methodology/approach

The structure of the thin film was observed by X-ray diffraction, optical properties by UV Vis and surface morphology by scanning electron microscope. The capacitance and the resistance with respect to change in relative humidity from 0 to 100%RH have been measured by LCR meter at 1 kHz.

Findings

The sensor’s response time is 7.5 s and its recovery time is 3.7 s, with high sensitivity of 127,259 pF/%RH and 332.287 MΩ/%RH. The authors have also used a proposed sensor on a steel body and observed humidity values. The analysis of all measured values was performed through the classical and neutrosophic approaches. By comparing, the authors have observed that the neutrosophic approach is more efficient in analyzing the sensor data.

Originality/value

In this work, the authors will fabricate a capacitive and resistive-type humidity sensor using the thin film of NiPc. The structural, optical and morphological properties of NiPc thin film will be investigated with different characterization techniques. The electric properties, i.e. capacitance and resistance, will be measured at intervals with an LCR meter by changing relative humidity (%RH). Moreover, the measured data will be analyzed through different statistical approaches, as already used in [12].

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 June 2023

Yidong Zhang

The purpose of this paper is to study the electronic transport performance of Ag-ZnO film under dark and UV light conditions.

Abstract

Purpose

The purpose of this paper is to study the electronic transport performance of Ag-ZnO film under dark and UV light conditions.

Design/methodology/approach

Ag-doped ZnO thin films were prepared on fluorine thin oxide (FTO) substrates by sol-gel method. The crystal structure of ZnO and Ag-ZnO powders was tested by X-ray diffraction with Cu Kα radiation. The absorption spectra of ZnO and Ag-ZnO films were recorded by a UV–visible spectrophotometer. The micro electrical transport performance of Ag-ZnO thin films in dark and light state was investigated by photoassisted conductive atomic force microscope (PC-AFM).

Findings

The results show that the dark reverse current of Ag-ZnO films does not increase, but the reverse current increases significantly under illumination, indicating that the response of Ag-ZnO films to light is greatly improved, owing to the formation of Ohmic contact.

Originality/value

To the best of the author’s knowledge, the micro electrical transport performance of Ag-ZnO thin films in dark and light state was firstly investigated by PC-AFM.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 June 2023

Mohamed Abd Alsamieh

The purpose of this paper is to investigate the performance of an ultra-thin film lubricated conjunction through the elastohydrodynamic lubrication of point contacts for various…

Abstract

Purpose

The purpose of this paper is to investigate the performance of an ultra-thin film lubricated conjunction through the elastohydrodynamic lubrication of point contacts for various ridge shapes and sizes located within the contact zone including flat-top, triangle and cosine wave profiles, considering the influence of surface forces of solvation and Van der Waals’ in addition to the hydrodynamic effect to predict an optimum geometric characteristics for surface texture for lubricated conjunctions.

Design/methodology/approach

Surface features are simulated in a variety of sizes and shapes including flat-top, triangle and cosine wave profiles. While estimating the elastic deformation of the contacting surfaces, surface forces of solvation and Van der Waals’ are taken into account. The Reynolds equation is solved using the Newton–Raphson method to get the pressure profile and film thickness including the elastic deformation, and surface feature.

Findings

The geometrical characteristics of the ridge, its placement in relation to the contact zone and its height all have a significant impact on the performance of ultra-thin film lubricated conjunction. When the triangular-shaped ridge is present in contact, it forecasts even sharper peaks in film thickness and pressure. More friction, wear and eventually contact fatigue are brought on by this more acute pressure and film thickness peaks. The flat-top ridge shape shows a better performance for lubricated conjunction where, the minimum film thickness value is comparable to that obtained for the case of a smooth contact surface. This behavior is attributed to the effect of intermolecular force of solvation. An increase in the size of the ridge results in a step increase in the film thickness for different ridge shapes, particularly for the flat-topped ridge pattern.

Originality/value

Evaluation of the performance of elastohydrodynamic lubricated ultra-thin film conjunction related to film thickness and pressure profile for various ridge surface features of different amplitudes, shapes and sizes located through the contact zone considering the influence of surface forces of solvation and Van der Waals’ in addition to the hydrodynamic effect.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0062/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 September 2023

Junjian Lu, Hongbin Zhong and Fei Luo

The purpose of this research is as follows: DPP-BOH-PVA has been synthesized from 1,1′:3′,1″-terphenyl-5'-boronic acid (DPP-OH) and polyvinyl alcohol (PVA). The afterglow lifetime…

Abstract

Purpose

The purpose of this research is as follows: DPP-BOH-PVA has been synthesized from 1,1′:3′,1″-terphenyl-5'-boronic acid (DPP-OH) and polyvinyl alcohol (PVA). The afterglow lifetime of DPP-BOH-PVA was studied by changing contents of DPP-OH (1, 2 and 4 Wt.%). These films were characterized with Fourier transform infrared, X-ray diffraction as structural analysis and DSC as thermal analysis. Afterglow lifetimes were evaluated as time-resolved emission decay profile analysis. Fiber films of DPP-BOH-PVA-2-E have been prepared by electrospinning method with the diameter of 5 μm and afterglow life time of 2.1 s (@ 535 nm) under ambient conditions. Stimulus responsive properties with afterglow emission for fiber film were investigated.

Design/methodology/approach

During the synthesis of the polymer, modification was carried out using DPP-OH/PVA with a molar ratio of 1/4, under an alkalinity medium with ammonium hydroxide and with a temperature of 80°C.

Findings

XRD results indicate that DPP-BOH-PVA film had high crystallinity, which is crucial for preparing organic room temperature phosphorescence (RTP) materials.

Research limitations/implications

The reaction mixture must be stirred continuously. Temperature should be controlled to prevent the rapid evaporation of ammonium hydroxide.

Practical implications

This study provides technical information for the synthesis of multidimensional stimulation response RTP micron fiber thin film. The electrospinning technology may also promote the applications of the large areas of RTP films.

Social implications

This resin will be used for the multidimensional stimulation response RTP fiber thin film.

Originality/value

The diameter of fiber film of PP-BOH-PVA-2-E by electrospinning method was in the range of 5 μm, and its afterglow lifetime decayed to be 2.1 s.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 August 2023

Yankun Tang, Ming Zhang, Kedong Chen, Sher Ali Nawaz, Hairong Wang, Jiuhong Wang and Xianqing Tian

Detecting O2 gas in a confined space at room temperature is particularly important to monitor the work process of precision equipment. This study aims to propose a miniaturized…

Abstract

Purpose

Detecting O2 gas in a confined space at room temperature is particularly important to monitor the work process of precision equipment. This study aims to propose a miniaturized, low-cost, mass-scale produced O2 sensor operating around 30°C.

Design/methodology/approach

The O2 sensor based on lanthanum fluoride (LaF3) solid electrolyte thin film was developed using MEMS technology. The principle of the sensor was a galvanic cell H2O, O2, Pt | LaF3 | Sn, SnF2 |, in which the Sn film was prepared by magnetron sputtering, and the LaF3 film was prepared by thermal resistance evaporation.

Findings

Through pretreatments, the sensor’s response signal to 40% oxygen concentration was enhanced from 1.9 mV to 46.0 mV at 30°C and 97.0% RH. Tests at temperatures from 30°C to 50°C and humidity from 32.4% RH to 97.0% RH indicated that the output electromotive force (EMF) has a linear relationship with the logarithm of the oxygen concentration. The sensitivity of the sensor increases with an increase in both humidity and temperature in the couple mode, and the EMF of the sensor follows well with the Nernst equation at different temperatures and humidity.

Practical implications

This research could be applied to monitor the oxygen concentration below 25% in confined spaces at room temperature safely without a power supply.

Originality/value

The relationship between temperature and humidity coupling and the response of the sensor was obtained. The nano-film material was integrated with the MEMS process. It is expected to be practically applied in the future.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 May 2023

Bassam Abdallah, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical…

44

Abstract

Purpose

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical properties. The aim of this work was depositing NbN thin films on two types of substrates (stainless steel (SS304) and silicon (100)) using plasma technique at varied powers (100–150 W).

Design/methodology/approach

DC magnetron sputtering technique at different powers were used to synthesis NbN films. Film structure was studied using X-ray diffraction (XRD) pattern. Rutherford elastic backscattering and energy dispersive X-ray were used to examine the deposited film composition. The films morphology was studied via atomic force microscopy and scanning electron microscopy images. Corrosion resistance of the three NbN/SS304 films was studied in 0.9% NaCl environment (physiological standard saline).

Findings

All properties could be controlled by the modification of DC power, where the crystallinity of samples was changed and consequently the corrosion and microhardness were modified, which correlated with the power. NbN film deposited at higher power (150 W) has shown better corrosion resistance (0.9% NaCl), which had smaller grain size (smoother) and was thicker.

Originality/value

The NbN films have a preferred orientation (111) matching to cubic structure phase. Corrosion resistance was enhanced for the NbN films compared to SS304 substrates (noncoating). Therefore, NbN films deposited on SS304 substrate could be applied as medicinal tools as well as in mechanical fields.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Vali Dalouji and Nasim Rahimi

In this paper, it can be seen from AFM images of the as-deposited ZnO and CZO films, and the particle size and shape are not clear, while by increasing annealing temperature, they…

Abstract

Purpose

In this paper, it can be seen from AFM images of the as-deposited ZnO and CZO films, and the particle size and shape are not clear, while by increasing annealing temperature, they become distinguishable. By increasing temperature to 600°C, ZnO and CZO, CAZO and aluminum-doped zinc oxide (AZO) films particles became almost spherical. Due to high content of Cu in CZO target, and of Al in AZO target which was 5% weight ratio, doping plays a great role in the subject. Therefore, the annealing processing strongly affect the size and the shape of nanoparticles.

Design/methodology/approach

In this paper, the authors tried to study, in detail, nobel optical characterizations of ZnO films doped by transition metals in different annealing temperature. The authors found that the values of skin depth, optical density, electron–phonon interaction, steepness parameter, band tail width, direct and indirect carriers transitions and the dissipation factor, free carriers density and roughness of films affect the optical properties, especially the optical absorptions of ZnO films doped by transition metals. Also these properties were affected by annealing temperatures. The authors also found that topography characterizations strongly were affected by these parameters.

Findings

The CZO films have maximum value of coordination number ß, with considering NC = 4, Za = 2, Ne = 8. The CZO films annealed at 500 °C have maximum value of optical density. The as-deposited CAZO films have maximum value of steepness parameters in about of 0.13 eV. The as-deposited AZO films have maximum value of dispersion energy Ed in about of 5.75 eV. Optical gap and disordering energy plots of films can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU, respectively.

Originality/value

With considering Nc = 4, Za = 2, Ne = 8 for ZnO films, coordination number ß has maximum value of 0.198. CZO nanocomposites films annealed at 500°C have maximum value of optical density. Different linear fitting of ln (α) for films were obtained as y = Ax + B where 5<A < 17 and 5<B < 12. As-deposited CAZO nanocomposites films have minimum value of electron phonon interaction in about of 4.91 eV. Optical gap and disordering energy plots can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU for as-deposited films and films annealed at 500°C, respectively. Steepness parameters of as-deposited CAZO nanocomposites films have maximum value of 0.13 eV. Dispersion energy Ed for as-deposited AZO nanocomposites films has maximum value of 5.75 eV.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 163