Search results

1 – 10 of over 39000
Article
Publication date: 15 April 2022

Mohamed Abd Alsamieh

The purpose of this study is to investigate the combined effect of surface force, solvation and Van der Waals forces and surface topography parameters of amplitude and wavelength…

Abstract

Purpose

The purpose of this study is to investigate the combined effect of surface force, solvation and Van der Waals forces and surface topography parameters of amplitude and wavelength on the formation of ultrathin films for elastohydrodynamic lubrication of point contact problems.

Design/methodology/approach

The Newton–Raphson technique is used to simultaneously solve the Reynolds’ film thickness including surface roughness and elastic deformation, surface force of solvation and Van der Waals forces and load balance equations. Different values of surface amplitude and wavelength were simulated in addition to the load variation.

Findings

The simulation results revealed that roughness effects are important as the film thickness decreases. The oscillation in the pressure and film thickness is due to the combined action of the solvation force and surface topography parameters. The limiting values of the surface topography parameters of the amplitude and wavelength varied and depended on the load. For different values of wavelength and load, amplitude values up to 0.25 nm have no effect on ultrathin film formation.

Originality/value

The combined effect of the surface force and surface roughness on the formation of ultrathin films was evaluated for elastohydrodynamic lubrication of point contact problems under different operating conditions of load and surface topography parameters of amplitude and wavelength. The limited surface topography parameters of the amplitude and wavelength are shown and analyzed.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 May 2020

Foad Sojoodi Farimani, Matthijn de Rooij, Edsko Hekman and Sarthak Misra

Additive manufacturing (AM) is a promising alternative to the conventional production methods (i.e., machining), providing the developers with great geometrical and topological…

Abstract

Purpose

Additive manufacturing (AM) is a promising alternative to the conventional production methods (i.e., machining), providing the developers with great geometrical and topological freedom during the design and immediate prototyping customizability. However, frictional characteristics of the AM surfaces are yet to be fully explored, making the control and manufacturing of precise assembly manufactured mechanisms (i.e., robots) challenging. The purpose of this paper is to understand the tribological behavior of fused deposition modeling (FDM) manufactured surfaces and test the accuracy of existing mathematical models such as Amontons–Coulomb, Tabor–Bowden, and variations of Hertz Contact model against empirical data.

Design/methodology/approach

Conventional frictional models Amontons–Coulomb and Tabor–Bowden are developed for the parabolic surface topography of FDM surfaces using variations of Hertz contact models. Experiments are implemented to measure the friction between two flat FDM surfaces at different speeds, normal forces, and surface configuration, including the relative direction of printing stripes and sliding direction and the surface area. The global maximum measured force is considered as static friction, and the average of the local maxima during the stick-slip phase is assumed as kinematic friction. Spectral analysis has been used to inspect the relationship between the chaos of vertical wobbling versus sliding speed.

Findings

It is observed that the friction between the two FDM planes is linearly proportional to the normal force. However, in contrast to the viscous frictional model (i.e., Stribeck), the friction reduces asymptotically at higher speeds, which can be attributed to the transition from harmonic to normal chaotic vibrations. The phase shift is investigated through spectral analysis; dominant frequencies are presented at different pulling speeds, normal forces, and surface areas. It is hypothesized that higher speeds lead to smaller dwell-time, reducing creep and adhesive friction consequently. Furthermore, no monotonic relationship between surface area and friction force is observed.

Research limitations/implications

Due to the high number of experimental parameters, the research is implemented for a limited range of surface areas, which should be expanded in future research. Furthermore, the pulling position of the jaws is different from the sliding distance of the surfaces due to the compliance involved in the contact and the pulling cable. This issue could be alleviated using a non-contact position measurement method such as LASER or image processing. Another major issue of the experiments is the planar orientation of the pulling object with respect to the sliding direction and occasional swinging in the tangential plane.

Practical implications

Given the results of this study, one can predict the frictional behavior of FDM manufactured surfaces at different normal forces, sliding speeds, and surface configurations. This will help to have better predictive and model-based control algorithms for fully AM manufactured mechanisms and optimization of the assembly manufactured systems. By adjusting the clearances and printing direction, one can reduce or moderate the frictional forces to minimize stick-slip or optimize energy efficiency in FDM manufactured joints. Knowing the harmonic to chaotic phase shift at higher sliding speeds, one can apply certain speed control algorithms to sustain optimal mechanical performance.

Originality/value

In this study, theoretical tribological models are developed for the specific topography of the FDM manufactured surfaces. Experiments have been implemented for an extensive range of boundary conditions, including normal force, sliding speed, and contact configuration. Frictional behavior between flat square FDM surfaces is studied and measured using a Zwick tensile machine. Spectral analysis, auto-correlation, and other methods have been developed to study the oscillations during the stick-slip phase, finding local maxima (kinematic friction) and dominant periodicity of the friction force versus sliding distance. Precise static and kinematic frictional coefficients are provided for different contact configurations and sliding directions.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 December 2018

Yusuf S. Dambatta, Mohd Sayuti, Ahmed A.D. Sarhan, Hamdi Bin Ab Shukor, Nur Aqilah binti Derahman and Sunusi Marwana Manladan

Optimisation of grinding processes involves enhancing the surface quality and reducing the cost of manufacturing through reduction of power consumptions. Recent research works…

300

Abstract

Purpose

Optimisation of grinding processes involves enhancing the surface quality and reducing the cost of manufacturing through reduction of power consumptions. Recent research works have indicated the minimum quantity lubrication (MQL) system is used to achieve near dry machining of alloys and hard materials. This study aims to provide an experimental analysis of the grinding process during machining of aluminium alloy (Al6061-T6). MQL nanofluid was used as the lubricant for the grinding operations. The lubricant was formed by suspending silicon dioxide nanoparticles in canola vegetable oil. The effect of input parameters (i.e. nanoparticle concentration, depth of cut, air pressure and feed rate) on the grinding forces and surface quality was studied. Adaptive neuro-fuzzy inference system (ANFIS) prediction modelling was used to predict the specific normal force, specific tangential force and surface quality, the ANFIS models were found to have prediction accuracies of 97.4, 96.6 and 98.5 per cent, respectively. Further study shows that both the specific grinding forces and surface roughness are inversely proportional to the nanofluid concentration. Also, the depth of cut and table feed rate were found to have a directly proportional relationship with both the grinding forces and surface roughness. Moreover, higher MQL air pressure was found to offer better delivery of the atomised nanofluid into the grinding region.

Design/methodology/approach

Grinding experiments were performed using MQL nanofluid as the lubricant. The lubricant was formed by suspending silicon dioxide nanoparticles in canola vegetable oil. The effect of input parameters (i.e. nanoparticle concentration, depth of cut, air pressure and feed rate) on the grinding forces and surface quality has been studied.

Findings

The grinding process parameters were optimised using Taguchi S/N ratio analysis, whereas the prediction of the response parameters was done using ANFIS modelling technique. The developed ANFIS models for predicting the specific normal force, specific tangential force and surface quality were found to have prediction accuracies of 97.4, 96.6 and 98.5 per cent, respectively. Further findings show that both the specific grinding forces and surface roughness are inversely proportional to the percentage of nanoparticle concentration in the lubricant. Also, the depth of cut and table feed rate were found to exhibit a direct proportional relationship with both the grinding forces and surface roughness, while high MQL air pressure was observed to offer more efficient delivery of the atomised nanofluid into the grinding region.

Practical implications

The work can applied into manufacturing industries to prevent unnecessary trials and material wastages.

Originality/value

The purpose of this study is to develop an artificial intelligent model for predicting the outcomes of MQL grinding of the aluminium alloy material using ANFIS modelling technique.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Mohamed Abd Alsamieh

The purpose of this is to study the mechanism of an oil film thickness formation in the nanoscale. A polar lubricant of propylene carbonate is used as the intervening liquid…

Abstract

Purpose

The purpose of this is to study the mechanism of an oil film thickness formation in the nanoscale. A polar lubricant of propylene carbonate is used as the intervening liquid between contiguous bodies in concentrated contacts. A pressure caused by the hydrodynamic viscous action in addition to the double-layer electrostatic force, van der Waals inter-molecular forces and solvation pressure owing to inter-surface forces is considered when calculating the ultrathin lubricating films.

Design/methodology/approach

Using the Newton–Raphson iteration technique applied for the convergence of the hydrodynamic pressure, a numerical solution has been ascertained.

Findings

The results show that, at separations beyond about five molecular diameters of the intervening liquid, the formation of a lubricant film thickness is governed by the combined effects of viscous action and surface force of an attractive van der Waals force and a repulsive double-layer force. At smaller separations below five molecular diameters of the intervening liquid, the effect of the solvation force is dominant in determining the oil film thickness.

Originality/value

This paper fulfils an identified need to study the behavior of polar lubricants in concentrated contacts in ultrathin conjunctions. The effect of the hydrodynamic action, electrostatic force and surface action of van der Waals and solvation forces is considered when calculating the lubricant oil film thickness.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2016

Rui Wang and Youhei Kawamura

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted…

Abstract

Purpose

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted lightweight magnetic wheel units with relatively high attractive force and friction force.

Design/methodology/approach

The robot has the main advantages of being compact (352 × – 215 × – 155 mm), lightweight (2.3 kg without battery) and simple mechanical structure. It is not only able to climb vertical walls and follow circumferential paths, but also able to pass complex obstacles such as bolts, steps, convex and concave corners with almost any inclination regarding gravity. By using a servo as a compliant joint, the wheel base can be changed to enable the robot to overcome convex corners.

Findings

The experiment results show that the climbing robot has a good performance on locomotion, and it is successful in negotiating the complex obstacles. On the other hand, the limitations in locomotion of the robot are also presented.

Originality/value

Compared with the past researches, the robot shows good performance on overcoming complex obstacles such as concave corners, convex corners, bolts and steps on the steel bridge. Magnetic wheel with the characterization of compact size and lightweight is able to provide bigger adhesion force and friction coefficient.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 March 2017

Mohamed Abd Al-Samieh

This paper aims to investigate the effect of changing speed of the entraining motion on the formation of ultra-thin lubricating films under different elliptical ratios. The…

Abstract

Purpose

This paper aims to investigate the effect of changing speed of the entraining motion on the formation of ultra-thin lubricating films under different elliptical ratios. The ellipticity parameter (K) varied from 1 (a ball-on-plate configuration) to 6 (a configuration approaching line contact). The influence of the ellipticity parameters, the dimensionless speed and the effects of surface forces on the formation of the minimum film thickness has been demonstrated. The demarcation boundary between region dominated by elastohydrodynamic lubrication (EHL) and that by the surface force action has been demonstrated for different elliptical ratios.

Design/methodology/approach

The numerical solution has been carried out, using the Newton–Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The film thickness and pressure distribution are obtained by simultaneous solution of the Reynolds’ equation, the elastic deformation (caused by hydrodynamic pressure, surface force of solvation and Van der Waals force) and the load balance equation. The operating conditions, load and speed of entraining motion, promote formation of ultra-thin films that are formed under the combined action of EHL, surface contact force of solvation and molecular interactions due to presence of Van der Waals force.

Findings

The paper provides insights about the transition between region dominated by EHL and that by the surface force action for changing ellipticity ratio (K) from 1 (a ball-on-plate configuration) to 6 (a configuration approaching line contact).

Originality/value

This paper fulfils an identified need to study the effect of changing ellipticity ratio on the formation of ultra-thin films that are formed under the combined action of EHL, surface contact force of solvation and molecular interactions due to presence of Van der Waals force.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 June 2023

Mohamed Abd Alsamieh

The purpose of this paper is to investigate the performance of an ultra-thin film lubricated conjunction through the elastohydrodynamic lubrication of point contacts for various…

Abstract

Purpose

The purpose of this paper is to investigate the performance of an ultra-thin film lubricated conjunction through the elastohydrodynamic lubrication of point contacts for various ridge shapes and sizes located within the contact zone including flat-top, triangle and cosine wave profiles, considering the influence of surface forces of solvation and Van der Waals’ in addition to the hydrodynamic effect to predict an optimum geometric characteristics for surface texture for lubricated conjunctions.

Design/methodology/approach

Surface features are simulated in a variety of sizes and shapes including flat-top, triangle and cosine wave profiles. While estimating the elastic deformation of the contacting surfaces, surface forces of solvation and Van der Waals’ are taken into account. The Reynolds equation is solved using the Newton–Raphson method to get the pressure profile and film thickness including the elastic deformation, and surface feature.

Findings

The geometrical characteristics of the ridge, its placement in relation to the contact zone and its height all have a significant impact on the performance of ultra-thin film lubricated conjunction. When the triangular-shaped ridge is present in contact, it forecasts even sharper peaks in film thickness and pressure. More friction, wear and eventually contact fatigue are brought on by this more acute pressure and film thickness peaks. The flat-top ridge shape shows a better performance for lubricated conjunction where, the minimum film thickness value is comparable to that obtained for the case of a smooth contact surface. This behavior is attributed to the effect of intermolecular force of solvation. An increase in the size of the ridge results in a step increase in the film thickness for different ridge shapes, particularly for the flat-topped ridge pattern.

Originality/value

Evaluation of the performance of elastohydrodynamic lubricated ultra-thin film conjunction related to film thickness and pressure profile for various ridge surface features of different amplitudes, shapes and sizes located through the contact zone considering the influence of surface forces of solvation and Van der Waals’ in addition to the hydrodynamic effect.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0062/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 June 2023

Shucai Yang, Shiwen Xing, Yang Yu, Pei Han, Chaoyang Guo and Lukai Liu

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool…

Abstract

Purpose

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool. The purpose of this study is to explore the rationality of simultaneous placement of micro-textures on the front and rear surfaces of ball-end milling cutters, analyze the influence of micro-texture parameters on tool milling behavior and workpiece surface quality, reveal its internal mechanism, and obtain the best micro-texture parameters by optimization.

Design/methodology/approach

First, the mechanism of micro-texture is studied based on the energy loss model. Second, the orthogonal experiment is designed to analyze the influence of micro-texture parameters on tool milling behavior and reveal its mechanism by combining simulation technology and cutting experiment. Finally, the parameters are optimized based on the artificial bee colony algorithm.

Findings

The results show that the simultaneous placement of micro-texture on the rake face and flank face of the tool has a positive effect on improving the milling behavior and surface quality of the tool. Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm.

Originality/value

Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm, which provides theoretical support for the further study of the micro-textured tool.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0022/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 July 2017

Francisco Duarte, Adelino Ferreira and Paulo Fael

This paper aims to deal with the development of a software tool to simulate and study vehicle – road interaction (VRI) to quantify the forces induced and energy released from…

Abstract

Purpose

This paper aims to deal with the development of a software tool to simulate and study vehicle – road interaction (VRI) to quantify the forces induced and energy released from vehicles to the road pavement, in different vehicle motion scenarios, and the energy absorbed by the road surface, speed reducers or a specific energy harvester surface or device. The software tool also enables users to quantify the energetic efficiency of the process.

Design/methodology/approach

Existing software tools were analysed and its limitations were identified in terms of performing energetic analysis on the interaction between the vehicle and the road pavement elements, such as speed reducers or energy harvest devices. The software tool presented in this paper intends to overcome those limitations and precisely quantify the energy transfer.

Findings

Different vehicle models and VRI models were evaluated, allowing to conclude about each model precision: bicycle car model has a 60 per cent higher precision when compared with quarter-car model, and contact patch analysis model has a 67 per cent higher precision than single force analysis model. Also, a technical study was performed for different equipment surface shapes and displacements, concluding that these variables have a great influence on the energy released by the vehicle and on the energy harvested by the equipment surface.

Originality/value

The developed software tool allows to study VRI with a higher precision than existing tools, especially when energetic analyses are performed and when speed reduction or energy harvesting devices are applied on the pavement.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 August 2019

Yuanfang Zhao and Yang Jianxi

The purpose of this paper is to explore the sensitive parameters affecting the friction resistance of sliding bearings under different interface slip conditions and the influence…

Abstract

Purpose

The purpose of this paper is to explore the sensitive parameters affecting the friction resistance of sliding bearings under different interface slip conditions and the influence of the texture position of circular pits on the friction force of sliding bearings.

Design/methodology/approach

Based on the mechanical equilibrium equation and Newton's viscous fluid mechanics formula and wedge oil film model, the calculation model of sliding bearing friction resistance under interface slip state is established, and the influence of interface slip on friction resistance under different slip conditions is analyzed by means of ANSYS. Friction simulation model of circular pit textured journal bearing under different interface slip conditions.

Findings

The friction resistance of bearings is mainly determined by journal linear velocity, oil film slip ratio, pressure of inlet and outlet of bearings, oil film thickness and bearing capacity. When both the upper and lower surfaces of the oil film slip, the friction resistance decreases significantly, which is only 4-17 per cent of that without slip. And the friction force of the texture model of circular pit at the exit is better than that at the entrance and the middle of the pit.

Originality/value

Relevant research results will lay a new theoretical foundation for friction reduction and optimization design of sliding bearings.

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 39000