Search results

1 – 10 of 14
Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2726

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 22 September 2023

Nengsheng Bao, Yuchen Fan, Chaoping Li and Alessandro Simeone

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could…

Abstract

Purpose

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could avoid disruptive consequences caused by the lack of timely maintenance. Currently, inspection operations are mostly carried out manually, resulting in time-consuming processes prone to health and safety hazards. To overcome such issues, this paper proposes a machine vision-based inspection system aimed at automating the oil leakage detection for improving the maintenance procedures.

Design/methodology/approach

The approach aims at developing a novel modular-structured automatic inspection system. The image acquisition module collects digital images along a predefined inspection path using a dual-light (i.e. ultraviolet and blue light) illumination system, deploying the fluorescence of the lubricating oil while suppressing unwanted background noise. The image processing module is designed to detect the oil leakage within the digital images minimizing detection errors. A case study is reported to validate the industrial suitability of the proposed inspection system.

Findings

On-site experimental results demonstrate the capabilities to complete the automatic inspection procedures of the tested industrial equipment by achieving an oil leakage detection accuracy up to 99.13%.

Practical implications

The proposed inspection system can be adopted in industrial context to detect lubricant leakage ensuring the equipment and the operators safety.

Originality/value

The proposed inspection system adopts a computer vision approach, which deploys the combination of two separate sources of light, to boost the detection capabilities, enabling the application for a variety of particularly hard-to-inspect industrial contexts.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 28 February 2023

Ahmad Hariri, Pedro Domingues and Paulo Sampaio

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

2027

Abstract

Purpose

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

Design/methodology/approach

A conceptual classification scheme is presented to analyze the hybrid QFD-MCDM methods. Then some recommendations are given to introduce directions for future research.

Findings

The results show that among all related areas, the manufacturing application has the most frequency of published papers regarding hybrid QFD-MCDM methods. Moreover, using uncertainty to establish a hybrid QFD-MCDM the relevant papers have been considered during the time interval 2004–2021.

Originality/value

There are various shortcomings in conventional QFD which limit its efficiency and potential applications. Since 2004, when MCDM methods were frequently adopted in the quality management context, increasing attention has been drawn from both practical and academic perspectives. Recently, the integration of MCDM techniques into the QFD model has played an important role in designing new products and services, supplier selection, green manufacturing systems and sustainability topics. Hence, this survey reviewed hybrid QFD-MCDM methods during 2004–2021.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 1 March 2024

Quoc Duy Nam Nguyen, Hoang Viet Anh Le, Tadashi Nakano and Thi Hong Tran

In the wine industry, maintaining superior quality standards is crucial to meet the expectations of both producers and consumers. Traditional approaches to assessing wine quality…

Abstract

Purpose

In the wine industry, maintaining superior quality standards is crucial to meet the expectations of both producers and consumers. Traditional approaches to assessing wine quality involve labor-intensive processes and rely on the expertise of connoisseurs proficient in identifying taste profiles and key quality factors. In this research, we introduce an innovative and efficient approach centered on the analysis of volatile organic compounds (VOCs) signals using an electronic nose, thereby empowering nonexperts to accurately assess wine quality.

Design/methodology/approach

To devise an optimal algorithm for this purpose, we conducted four computational experiments, culminating in the development of a specialized deep learning network. This network seamlessly integrates 1D-convolutional and long-short-term memory layers, tailor-made for the intricate task at hand. Rigorous validation ensued, employing a leave-one-out cross-validation methodology to scrutinize the efficacy of our design.

Findings

The outcomes of these e-demonstrates were subjected to meticulous evaluation and analysis, which unequivocally demonstrate that our proposed architecture consistently attains promising recognition accuracies, ranging impressively from 87.8% to an astonishing 99.41%. All this is achieved within a remarkably brief timeframe of a mere 4 seconds. These compelling findings have far-reaching implications, promising to revolutionize the assessment and tracking of wine quality, ultimately affording substantial benefits to the wine industry and all its stakeholders, with a particular focus on the critical aspect of VOCs signal analysis.

Originality/value

This research has not been published anywhere else.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 November 2023

En-Ze Rui, Guang-Zhi Zeng, Yi-Qing Ni, Zheng-Wei Chen and Shuo Hao

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural…

Abstract

Purpose

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN), which was proposed to encode physical laws into neural networks, is a less data-demanding approach for flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions under the PINN framework. This study aims to propose a physics-based data-driven approach for time-averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach

A multifidelity strategy leveraging PINN and a nonlinear information fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINN which is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model, which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings

Two experimental cases are used to verify the capability and efficacy of the proposed strategy through comparison with other widely used strategies. It is revealed that the missing flow information within the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the accuracy of reconstruction.

Originality/value

In this study, a physics-informed data-driven strategy for time-averaged flow field reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding physical laws when training the multifidelity model leads to less data demand for model development compared to purely data-driven methods for flow field reconstruction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 22 August 2022

Angela Jadwiga Andrzejewska

Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization…

1234

Abstract

Purpose

Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the results of mechanical testing of polylactide-based bone models before and after sterilization.

Design/methodology/approach

Polylactide specimens prepared in fused filament fabrication technology were sterilized with different sterilization methods: ultraviolet (UV) and ethylene oxide. Mechanical properties were determined by testing tensile strength, Young’s modulus and toughness.

Findings

The tensile strength of material after sterilization was significantly higher after ethylene oxide sterilization compared to the UV sterilization, but in both sterilization methods, the specimens characterized lower tensile strength and Young’s modulus when compared to the control. In comparison of toughness results, there was no statistically significant differences. The findings are particularly significant in the perspective of using individual implants, bone grafts and dental guides.

Originality/value

Although fused filament fabrication (FFF) 3D printing devices equipped with UV light sterilization options are available, experimental results of the effect of selected sterilization methods on the mechanical strength of additively manufactured parts have not been described. This paper completes the present state of the art on the problem of sterilization of FFF parts from biodegradable materials.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 16 August 2023

Andrea Zani, Alberto Speroni, Andrea Giovanni Mainini, Michele Zinzi, Luisa Caldas and Tiziana Poli

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based…

Abstract

Purpose

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based matrix coupled with a stretchable three-dimensional textile. The paper’s aim is, through a performance-based generative design approach, to develop a high-performance static shading system able to guarantee adequate daylit spaces, a connection with the outdoors and a glare-free environment in the view of a holistic and occupant-centric daylight assessment.

Design/methodology/approach

The paper describes the design and simulation process of a complex static shading system for digital manufacturing purposes. Initially, the optical material properties were characterized to calibrate radiance-based simulations. The developed models were then implemented in a multi-objective genetic optimization algorithm to improve the shading geometries, and their performance was assessed and compared with traditional external louvres and overhangs.

Findings

The system developed demonstrates, for a reference office space located in Milan (Italy), the potential of increasing useful daylight illuminance by 35% with a reduced glare of up to 70%–80% while providing better uniformity and connection with the outdoors as a result of a topological optimization of the shape and position of the openings.

Originality/value

The paper presents the innovative nature of a new composite material that, coupled with the proposed performance-based optimization process, enables the fabrication of optimized shading/cladding surfaces with complex geometries whose formability does not require ad hoc formworks, making the process fast and economic.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Book part
Publication date: 12 December 2023

Ulla Eriksson-Zetterquist and Kerstin Sahlin

Collegiality is often discussed and analyzed as a challenged form of governance, a form of working that used to function well in universities prior to the emergence of…

Abstract

Collegiality is often discussed and analyzed as a challenged form of governance, a form of working that used to function well in universities prior to the emergence of contemporary and modern forms of governance. This seems to suggest that collegiality used to dominate, while other forms of governance are now taking over. The papers in volume 86 of this special issue support the notion of challenged collegiality, but also show that for the most part, nostalgic notions of “the good old days” are neither true nor helpful if we are to revitalize academic collegiality. After examining whether a golden age of collegiality ever existed, we discuss why collegiality matters. Exploring what are often described as limitations or “dark sides” of collegiality, we address four such “dark sides” related to slow decision-making, conflicts, parochialism, and diversity. This is followed by a discussion of how these limitations may be handled and what measures must be taken to maintain and develop collegiality. With a brief summary of the remaining papers under two headings, “Maintaining collegiality” and “Revitalizing collegiality,” we preview the rest of this volume.

Details

Revitalizing Collegiality: Restoring Faculty Authority in Universities
Type: Book
ISBN: 978-1-80455-818-8

Keywords

Access

Only Open Access

Year

Last 6 months (14)

Content type

1 – 10 of 14