Search results

1 – 10 of 198
Article
Publication date: 24 May 2023

S. Vignesh and A. Johnney Mertens

This research work aims to determine the maximum load a thermoplastic gear can withstand without the occurrence of extended contact. The extended contact of polymer gears is…

Abstract

Purpose

This research work aims to determine the maximum load a thermoplastic gear can withstand without the occurrence of extended contact. The extended contact of polymer gears is usually overlooked in basic design calculations, although it considerably affects the gear's load-carrying ability. Although various researchers highlighted the phenomenon, an extensive investigation of the extended contact behaviour is limited. Hence the work aims to investigate the premature and extended contact behaviour of thermoplastic gears and its effect in the gear kinematics, bending stiffness, stresses induced and the roll angle subtended by the gear pair.

Design/methodology/approach

The work uses finite element method to perform quasi-static two-dimensional analysis of the meshing gear teeth. The FE model was developed in AutoCAD and analysed using ANSYS 19.1 simulation package. A three-dimensional gear model with all the teeth is computationally intensive for solving a static analysis problem. Hence, planar analysis with a reduced number of teeth is considered to reduce the computational time and difficulty.

Findings

The roll angle subtended at the centre by the path of approach is higher than the path of recess because of the increased load sharing. The contact stress profile followed a unique R-F-R-F pattern in the premature and extended contact regions due to the driven tip-driver flank surface contact. A non-dimensional parameter was formulated correlating the young's modulus, the load applied and deflection induced that can be utilised to predict the occurrence of premature and extended contact in thermoplastic gears.

Originality/value

The gear rating standards for polymer gears are formulated from the conventional metal gears which does not include the effect of gear tooth deflection. The work attempts to explain the gear tooth deflection for various standard thermoplastics and its effect in kinematics. Likewise, a new dimensionless number was introduced to predict the extended contact that will help in appropriate selection of load reducing the possibility of wear.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 April 2024

R.S. Vignesh and M. Monica Subashini

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories…

Abstract

Purpose

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories is different and also, there is insufficiency of high-scale databases for training. The purpose of the study is to provide high security.

Design/methodology/approach

In this research, optimization-assisted federated learning (FL) is introduced for thermoplastic waste segregation and classification. The deep learning (DL) network trained by Archimedes Henry gas solubility optimization (AHGSO) is used for the classification of plastic and resin types. The deep quantum neural networks (DQNN) is used for first-level classification and the deep max-out network (DMN) is employed for second-level classification. This developed AHGSO is obtained by blending the features of Archimedes optimization algorithm (AOA) and Henry gas solubility optimization (HGSO). The entities included in this approach are nodes and servers. Local training is carried out depending on local data and updations to the server are performed. Then, the model is aggregated at the server. Thereafter, each node downloads the global model and the update training is executed depending on the downloaded global and the local model till it achieves the satisfied condition. Finally, local update and aggregation at the server is altered based on the average method. The Data tag suite (DATS_2022) dataset is used for multilevel thermoplastic waste segregation and classification.

Findings

By using the DQNN in first-level classification the designed optimization-assisted FL has gained an accuracy of 0.930, mean average precision (MAP) of 0.933, false positive rate (FPR) of 0.213, loss function of 0.211, mean square error (MSE) of 0.328 and root mean square error (RMSE) of 0.572. In the second level classification, by using DMN the accuracy, MAP, FPR, loss function, MSE and RMSE are 0.932, 0.935, 0.093, 0.068, 0.303 and 0.551.

Originality/value

The multilevel thermoplastic waste segregation and classification using the proposed model is accurate and improves the effectiveness of the classification.

Article
Publication date: 27 January 2023

Wei Chen, Qiuju Zhang, Ye Yuan, Xiaoyan Chen and Qinghao He

Continuous fiber reinforced thermoplastic composites (CFRTPCs) with great mechanical properties and green recyclability have been widely used in aerospace, transportation, sports…

Abstract

Purpose

Continuous fiber reinforced thermoplastic composites (CFRTPCs) with great mechanical properties and green recyclability have been widely used in aerospace, transportation, sports and leisure products, etc. However, the conventional molding technologies of CFRTPCs, with high cost and low efficiency, limit the property design and broad application of composite materials. The purpose of this paper is to study the effect of the 3D printing process on the integrated rapid manufacturing of CFRTPCs.

Design/methodology/approach

Tensile and flexural simulations and tests were performed on CFRTPCs. The effect of key process parameters on mechanical properties and molding qualities was evaluated individually and mutually to optimize the printing process. The micro morphologies of tensile and flexural breakages of the printed CFRTPCs were observed and analyzed to study the failure mechanism.

Findings

The results proved that the suitable process parameters for great printing qualities and mechanical properties included the glass hot bed with the microporous and solid glue coatings at 60°C and the nozzle temperature at 295°C. The best parameters of the nozzle temperature, layer thickness, feed rate and printing speed for the best elastic modulus and tensile strength were 285°C, 0.5 mm, 6.5r/min and 500 mm/min, respectively, whereas those for the smallest sectional porosity were 305°C, 0.6 mm, 5.5r/min and 550 mm/min, respectively.

Originality/value

This work promises a significant contribution to the improvement of the printing quality and mechanical properties of 3D printed CFRTPCs parts by the optimization of 3D printing processes.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 March 2024

Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

56

Abstract

Purpose

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

Design/methodology/approach

The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.

Findings

The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.

Social implications

This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 December 2023

Austin R. Colon, David Owen Kazmer, Amy M. Peterson and Jonathan E. Seppala

A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer…

Abstract

Purpose

A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented.

Design/methodology/approach

Infrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature.

Findings

The experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle.

Originality/value

This work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 September 2023

Vivek Kumar Tiwary, Arunkumar Padmakumar and Vinayak R. Malik

Material extrusion (MEX) 3D printers suffer from an intrinsic limitation of small size of the prints due to its restricted bed dimension. On the other hand, friction stir spot…

Abstract

Purpose

Material extrusion (MEX) 3D printers suffer from an intrinsic limitation of small size of the prints due to its restricted bed dimension. On the other hand, friction stir spot welding (FSSW) is gaining wide interest from automobile, airplane, off-road equipment manufacturers and even consumer electronics. This paper aims to explore the possibility of FSSW on Acrylonitrile Butadiene Styrene/Polylactic acid 3D-printed components to overcome the bed size limitation of MEX 3D printers.

Design/methodology/approach

Four different tool geometries (tapered cylindrical pin with/without concavity, pinless with/without concavity) were used to produce the joints. Three critical process parameters related to FSSW (tool rotational speed, plunge depth and dwell time) and two related to 3D printing (material combination and infill percentages) were investigated and optimized using the Taguchi L27 design of experiments. The influence of each welding parameter on the shear strength was evaluated by analysis of variance.

Findings

Results revealed that the infill percentage, a 3D printing parameter, had the maximum effect on the joint strength. The joints displayed pull nugget, cross nugget and substrate failure morphologies. The outcome resulted in the joint efficiency reaching up to 100.3%, better than that obtained by other competitive processes for 3D-printed thermoplastics. The results, when applied to weld a UAV wing, showed good strength and integrity. Further, grafting the joints with nylon micro-particles was also investigated, resulting in a detrimental effect on the strength.

Originality/value

To the best of the authors’ knowledge, this is the first study to demonstrate that the welding of dissimilar 3D-printed thermoplastics with/without microparticles is possible by FSSW, whilst the process parameters have a considerable consequence on the bond strength.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2023

Ashish Kaushik and Ramesh Kumar Garg

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the…

Abstract

Purpose

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the characteristics of the materials, which are essential in determining their clinical efficacy when exposed to oral surroundings.

Design/methodology/approach

A collective analysis of published articles covering the use of rapid prototyping technologies in the fabrication of occlusal splints, including manufacturing workflow description and essential properties (mechanical- and thermal-based) evaluation of biocompatible splinting materials, was performed.

Findings

Without advances in rapid prototyping processes and materials engineering, occlusal splints would tend to underperform clinically due to biomechanical limitations.

Social implications

Three-dimensional printing can improve the process capabilities for commercial customization of biomechanically efficient occlusal splints.

Originality/value

Rapid technological advancement in dentistry with the extensive utilization of rapid prototyping processes, intra-oral scanners and novel biomaterial seems to be the potential breakthrough in the fabrication of customized occlusal splints which have endorsed occlusal splint therapy (OST) as a cornerstone of orthodontic treatment.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2023

Amador Chapa, Enrique Cuan-Urquizo, PD Urbina-Coronado and Armando Roman-Flores

Fused filament fabrication (FFF) is a popular technique in rapid prototyping capable of building complex structures with high porosity such as cellular solids. The study of…

292

Abstract

Purpose

Fused filament fabrication (FFF) is a popular technique in rapid prototyping capable of building complex structures with high porosity such as cellular solids. The study of cellular solids is relevant by virtue of their enormous potential to exhibit non-traditional deformation mechanisms. The purpose of this study is to exploit the benefits of the FFF technology to fabricate re-entrant honeycomb structures using thermoplastic polyurethane (TPU) to characterize their mechanical response when subjected to cyclic compressive loadings.

Design/methodology/approach

Specimens with different volume fraction were designed, three-dimensionally printed and tested in uniaxial cyclic compressions up until densification strain. The deformation mechanism and apparent elastic moduli variation throughout five loading/unloading cycles in two different loading orientations were studied experimentally.

Findings

Experimental results demonstrated a nonlinear relationship between volume fraction and apparent elastic modulus. The amount of energy absorbed per loading cycle was computed, exhibiting reductions in energy absorbed of 12%–19% in original orientation and 15%–24% when the unit cells were rotated 90°. A softening phenomenon in the specimens was identified after the first compression when compared to second compression, with reduction in apparent elastic modulus of 23.87% and 28.70% for selected samples V3 and H3, respectively. Global buckling in half of the samples was observed, so further work must include redesign in the size of the samples.

Originality

The results of this study served to understand the mechanical response of TPU re-entrant honeycombs and their energy absorption ability when compressed in two orientations. This study helps to determine the feasibility of using FFF as manufacturing method and TPU to construct resilient structures that can be integrated into engineering applications as crash energy absorbers. Based on the results, authors suggest structure’s design optimization to reduce weight, higher number of loading cycles (n > 100) and crushing velocities (v > 1 m/s) in compression testing to study the dynamic mechanical response of the re-entrant honeycomb structures and their ability to withstand multiple compressions.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

1 – 10 of 198