To read this content please select one of the options below:

Numerical investigation on the premature and extended contact behaviour of engineering thermoplastic gears and its effect in gear kinematics

S. Vignesh (Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, India)
A. Johnney Mertens (Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, India)

Multidiscipline Modeling in Materials and Structures

ISSN: 1573-6105

Article publication date: 24 May 2023

Issue publication date: 5 June 2023

48

Abstract

Purpose

This research work aims to determine the maximum load a thermoplastic gear can withstand without the occurrence of extended contact. The extended contact of polymer gears is usually overlooked in basic design calculations, although it considerably affects the gear's load-carrying ability. Although various researchers highlighted the phenomenon, an extensive investigation of the extended contact behaviour is limited. Hence the work aims to investigate the premature and extended contact behaviour of thermoplastic gears and its effect in the gear kinematics, bending stiffness, stresses induced and the roll angle subtended by the gear pair.

Design/methodology/approach

The work uses finite element method to perform quasi-static two-dimensional analysis of the meshing gear teeth. The FE model was developed in AutoCAD and analysed using ANSYS 19.1 simulation package. A three-dimensional gear model with all the teeth is computationally intensive for solving a static analysis problem. Hence, planar analysis with a reduced number of teeth is considered to reduce the computational time and difficulty.

Findings

The roll angle subtended at the centre by the path of approach is higher than the path of recess because of the increased load sharing. The contact stress profile followed a unique R-F-R-F pattern in the premature and extended contact regions due to the driven tip-driver flank surface contact. A non-dimensional parameter was formulated correlating the young's modulus, the load applied and deflection induced that can be utilised to predict the occurrence of premature and extended contact in thermoplastic gears.

Originality/value

The gear rating standards for polymer gears are formulated from the conventional metal gears which does not include the effect of gear tooth deflection. The work attempts to explain the gear tooth deflection for various standard thermoplastics and its effect in kinematics. Likewise, a new dimensionless number was introduced to predict the extended contact that will help in appropriate selection of load reducing the possibility of wear.

Keywords

Citation

Vignesh, S. and Johnney Mertens, A. (2023), "Numerical investigation on the premature and extended contact behaviour of engineering thermoplastic gears and its effect in gear kinematics", Multidiscipline Modeling in Materials and Structures, Vol. 19 No. 4, pp. 766-780. https://doi.org/10.1108/MMMS-11-2022-0242

Publisher

:

Emerald Publishing Limited

Copyright © 2023, Emerald Publishing Limited

Related articles