Search results

1 – 10 of over 1000
Article
Publication date: 5 March 2024

Saloni Purandare and Chunhui Xiang

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE…

Abstract

Purpose

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE. Over time the gloves have reduced the intensity of hand injuries, yet further improvement in terms of material selection and glove design is required to strike the balance between protection and comfort. Focusing on the material aspect, the purpose of this study is to present literature analysis on material selection and testing for firefighter gloves.

Design/methodology/approach

The study conducted a literature analysis on material selection and characterization of firefighter PPE. The review summarizes and evaluates past work addressing the characterization of firefighter gloves in accordance with NFPA 1971 requirements and points out found research gaps to aid with foundation of future research.

Findings

The study summarizes several research works to inform readers about the material selection and characterization of firefighter gloves. Based on the analyzed literature, the study resulted in material specification sheets for firefighter gloves. The developed material specification sheets provide information in terms of crucial material properties to be incorporated for accurate functioning of firefighter gloves, testing methods to validate those material properties and materials from analyzed literature exhibiting desired properties.

Originality/value

With large research addressing firefighter PPE, only limited studies focus specifically on gloves. Thus, this study provides a literature analysis covering material selection and testing for gloves. A consolidated firefighter gloves material specification document, which does not appear to be available in the literature, will provide a foundation for the development and characterization of firefighter gloves to better serve the functions along with ensuring user comfort.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 October 2023

Samridhi Garg, Vinay Kumar Midha and Monica Sikka

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Abstract

Purpose

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Design/methodology/approach

Water may not accurately reflect perspiration when testing multi-layered clothes for thermal comfort in wet state. Most researchers used water or sodium chloride (NaCl) to measure wet state thermal comfort. However, human perspiration is an extremely complex mixture of aqueous chemicals, including minerals, salts, lipids, urea and lactic acid. This study compares the effects of simulated sweat solution to distilled water on the thermal behaviour of a multi-layered fabric assembly with different seam patterns.

Findings

Experiment results show that stitching decreases thermal resistance and thermal conductivity. Seam pattern of 10 cm diagonal spacing is more thermally resistant than 2.5 cm diagonal spacing. In comparison to that of simulated sweat, fabric that has been moistened with distilled water exhibits increased thermal conductivity. Hollow polyester wadding or micro polyester wadding as the intermediate layer exhibits greater thermal resistance than multi-layered construction with spacer fabric as middle layer.

Originality/value

This study considers human perspiration while designing protective clothing for wet thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 September 2022

Xue Chen, Zhaohua Zhang and Yutong Yang

The purpose of this paper is to explore the distribution of local thermal sensitivity of human body heating and the local preferred heating temperature, and the influence of this…

Abstract

Purpose

The purpose of this paper is to explore the distribution of local thermal sensitivity of human body heating and the local preferred heating temperature, and the influence of this sensitive division on thermal response when heating human body in cold environment.

Design/methodology/approach

Eight subjects were invited to use carbon fiber heating patches in an environment of 5 and RH 50%, and eight body parts were selected to explore the heating sensitivity. By measuring the skin temperature and evaluating the subjective thermal sensation and thermal comfort, the thermal sensitivity of local body segments and the influence of single-zone and double-zone heating on human thermal response were explored.

Findings

The sensitivity of local heating on overall thermal sensation (OTS) was foot > back > chest > abdomen > waist > elbow > hand > knee. Both single-zone and double-zone heating can improve the OTS, but double-zone heating can reach thermal neutrality and thermal comfort. In order to prevent the high temperature of heating patches from damaging human body, the local skin temperature should be monitored in the design of local heating clothing, and 39.6 should be taken as the upper limit of local skin temperature.

Originality/value

The results provide a theoretical basis for the selection of heating position in local electric heating clothing (EHC) and the design of intelligent temperature adjustment heating clothing, improve the performance of local EHC and reduce energy consumption.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 March 2023

Xiaokun Zhou, Suming Xie, Maosheng He, Tingting Fu and Qifeng Yu

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Abstract

Purpose

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Design/methodology/approach

Based on traditional aluminium alloy doors, a new type of honeycomb composite material was developed. Tests were conducted to determine the honeycomb compression resistance, honeycomb and skin shear performance, plate bending, thermal conductivity and environmental protection. Eight doors were developed based on the full-side open structure, and static strength and stiffness analyses were performed simultaneously. To solve door vibration problems, modal analysis and test were carried out.

Findings

The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The first–sixth-order test mode of the door was increased by more than 14% compared with existing aluminium alloy doors.

Originality/value

A new type of honeycomb composite material was used in this study. The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The 1st-to-6th order test mode of the door was increased by more than 14% compared with the existing aluminium alloy door.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 May 2023

Sibel Kaplan and Havva Tokgoz

Sleep quality, a crucial parameter for health and life performance, is affected by mattress components; particularly mechanical and thermal comfort management ability of the upper…

Abstract

Purpose

Sleep quality, a crucial parameter for health and life performance, is affected by mattress components; particularly mechanical and thermal comfort management ability of the upper layers. The aim of this study is to investigate effects of quilted mattress ticking fabric material (polyester, polypropylene, viscose, lyocell and their blends) on thermal comfort of the bedding system by objective and subjective measurements.

Design/methodology/approach

The permeability (air and water vapour), heat transfer, water absorption, transfer and drying behaviours of knitted quilted fabrics which influence the thermal comfort of the bedding system were investigated. Subjective coolness and dampness evaluations were gathered by forearm and hand-palm tests to provide more realistic discussion in light of fabric characteristics.

Findings

According to the results, polypropylene can be suggested for winter use with its higher air and water vapour permeabilities, lower thermal absorption and conductivities and warmer evaluation results. Lyocell can be suggested for summer use with also high permeabilities, higher thermal absorption and conductivities and cooler evaluation results. Polyester and viscose may also be considered for winter and summer in turn as a result of thermal feelings they create.

Originality/value

In addition to fabric thermal, permeability, liquid absorption and transfer properties, this study also includes subjective coolness and dampness evaluations which can provide realistic results regarding the coolness-to-touch and liquid transfer performances of mattress ticking fabrics. The relationships among objective and subjective data were investigated and the proposed subjective evaluation techniques can be used for different products.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 February 2023

Selinay Gumus, Kaan Aksoy and Ayse Aytac

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with…

Abstract

Purpose

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with nanoparticles shows better properties than the pure polymer itself. Nano or inorganic fillers are used in the polymeric matrix to improve thermal, mechanical and physical properties.

Design/methodology/approach

To improve thermal, mechanical and physical properties, UPE resin was modified with silica (S), boron nitride (BN) and S/BN hybrid nanoparticles at different ratios. Viscosity and solids content measurement, Fourier transform infrared spectroscopy, contact angle measurement, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and thermal conductivity coefficient tests were performed on the samples.

Findings

In the SEM analysis, the UPE sample showed a smooth appearance, while all samples containing additives showed phase separation and overall heterogeneous distribution. TGA results demonstrated that the thermal stability of the resin increased in the presence of S and BN additives. According to the results, it was observed that the presence of S and BN additives in the UPE resin and the use of certain ratios improved the resin properties.

Originality/value

As a result of the literature search, to the best of the authors’ knowledge, no study was found in which BN nanoparticles were included in the UPE resin together with S.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested…

Abstract

Purpose

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested and reported. The purpose of this paper is suggesting thin film-based TIM to sustain the light-emiting diode (LED) performance and electronic device miniaturization.

Design/methodology/approach

Consequently, ZnO thin film at various thicknesses was prepared by chemical vapour deposition (CVD) method and tested their thermal behaviour using thermal transient analysis as solid TIM for high-power LED.

Findings

Low value in total thermal resistance (Rth-tot) was observed for ZnO thin film boundary condition than bare Al boundary condition. The measured interface (ZnO thin film) resistance {(Rth-bhs) thermal resistance of the interface layer (thin film) placed between metal core printed circuit board (MCPCB) board and Al substrates} was nearly equal to Ag paste boundary condition and showed low values for ZnO film prepared at 30 min process time measured at 700 mA. The TJ value of LED mounted on ZnO thin film (prepared at 30 min.) coated Al substrates was measured to be 74.8°C. High value in junction temperature difference (ΔTJ) of about 4.7°C was noticed with 30 min processed ZnO thin film when compared with Al boundary condition. Low correlated colour temperature and high luminous flux values of tested LED were also observed with ZnO thin film boundary condition (processed at 30 min) compared with both Al substrate and Ag paste boundary condition.

Originality/value

Overall, 30 min CVD processed ZnO thin film would be an alternative for commercial TIM to achieve efficient thermal management. This will increase the life span of the LED as the proposed material decreases the TJ values.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 November 2022

Manoj Kumar Imrith, Satyadev Rosunee and Roshan Unmar

The thermophysiological comfort of fabrics is prerequisite as customers covet adequate moisture, heat management-supported and UV protective clothing that measure up to their…

Abstract

Purpose

The thermophysiological comfort of fabrics is prerequisite as customers covet adequate moisture, heat management-supported and UV protective clothing that measure up to their levels of activities and environmental conditions. Hitherto, scant tasks have been reported with the purpose of engineering both comfort and UV protection simultaneously. From that vantage point, the objective of this work is to develop a model for optimum UPF, air permeability, water-vapour resistance, thermal resistance, thermal absorptivity and areal density of knitted fabrics.

Design/methodology/approach

Weft knitted fabrics of various compositions were investigated. UPF was tested using the Labsphere UV transmittance analyser. The FX 3300 (Textest instruments) air permeability tester was used to test air permeability. Thermal comfort and water-vapour resistance were evaluated using the Alambeta and Permetest instruments, respectively. Based on image processing, the porosity was measured. Fabrics thickness and areal density were measured according to standard methods. Furthermore, parametric and non-parametric statistical test methods were applied to the data for analysis.

Findings

Linear regression was substantiated by Kolmogorov-Smirnov test. Then multiple linear regression of porosity and thickness together on UPF and comfort parameters were visually depicted by virtue of 3D linear plots. Residual analysis with quantile-quantile and probability plots, advocated the tests using the Shapiro-Wilk test. The result was validated by comparison with experimental data tested. The samples gave satisfactory relative errors and were supported by the z-test method. All tests indicated failure to reject the null hypothesis.

Originality/value

The predictive models were embedded into an interactive computer program. Fabric thickness and porosity are the inputs needed to run the program. It will predict the optimum UPF, areal density and thermophysiological comfort parameters. In a nutshell, knitters may use the program to determine optimum structural parameters for diverse permutations of UPF and thermophysiological comfort parameters; scilicet high UV protection together with low thermal insulation combined with low water-vapour resistance and high air permeability.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 April 2023

Yang Yang, Weijing Zhang, Zheng Liu and Peihua Zhang

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Abstract

Purpose

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Design/methodology/approach

In this paper eight bi-layer knitted fabrics with the same knitting structure but different filament compositions were prepared, and the thermal-wet comfort properties of these fabrics were examined. According to experimental data, the effect of filament composition on the thermal comfort properties of fabric was analyzed.

Findings

The increasing difference of hydrophilicity between inner and outer layers resulted in the enhancement of moisture management properties. Better thermal-physiology performance was exhibited by fabrics made up of finer and circular section fibers. Excellent thermal transfer, drying performance and one-way water transport capacity benefited the improvement of dynamic cooling effect of fabrics.

Originality/value

This work provides a useful and effective method for the development of bi-layer knitted fabric applied for sports and summer clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 February 2023

Arad Azizi, Fatemeh Hejripour, Jacob A. Goodman, Piyush A. Kulkarni, Xiaobo Chen, Guangwen Zhou and Scott N. Schiffres

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the…

Abstract

Purpose

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity.

Design/methodology/approach

The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity.

Findings

The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm3. The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains.

Practical implications

The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications.

Originality/value

To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity.

Access

Year

Last 12 months (1026)

Content type

Article (1026)
1 – 10 of over 1000