Search results

1 – 10 of over 16000
Article
Publication date: 6 July 2018

Y.P. Tsang, K.L. Choy, C.H. Wu, G.T.S. Ho, Cathy H.Y. Lam and P.S. Koo

Since the handling of environmentally sensitive products requires close monitoring under prescribed conditions throughout the supply chain, it is essential to manage specific…

5729

Abstract

Purpose

Since the handling of environmentally sensitive products requires close monitoring under prescribed conditions throughout the supply chain, it is essential to manage specific supply chain risks, i.e. maintaining good environmental conditions, and ensuring occupational safety in the cold environment. The purpose of this paper is to propose an Internet of Things (IoT)-based risk monitoring system (IoTRMS) for controlling product quality and occupational safety risks in cold chains. Real-time product monitoring and risk assessment in personal occupational safety can be then effectively established throughout the entire cold chain.

Design/methodology/approach

In the design of IoTRMS, there are three major components for risk monitoring in cold chains, namely: wireless sensor network; cloud database services; and fuzzy logic approach. The wireless sensor network is deployed to collect ambient environmental conditions automatically, and the collected information is then managed and applied to a product quality degradation model in the cloud database. The fuzzy logic approach is applied in evaluating the cold-associated occupational safety risk of the different cold chain parties considering specific personal health status. To examine the performance of the proposed system, a cold chain service provider is selected for conducting a comparative analysis before and after applying the IoTRMS.

Findings

The real-time environmental monitoring ensures that the products handled within the desired conditions, namely temperature, humidity and lighting intensity so that any violation of the handling requirements is visible among all cold chain parties. In addition, for cold warehouses and rooms in different cold chain facilities, the personal occupational safety risk assessment is established by considering the surrounding environment and the operators’ personal health status. The frequency of occupational safety risks occurring, including cold-related accidents and injuries, can be greatly reduced. In addition, worker satisfaction and operational efficiency are improved. Therefore, it provides a solid foundation for assessing and identifying product quality and occupational safety risks in cold chain activities.

Originality/value

The cold chain is developed for managing environmentally sensitive products in the right conditions. Most studies found that the risks in cold chain are related to the fluctuation of environmental conditions, resulting in poor product quality and negative influences on consumer health. In addition, there is a lack of occupational safety risk consideration for those who work in cold environments. Therefore, this paper proposes IoTRMS to contribute the area of risk monitoring by means of the IoT application and artificial intelligence techniques. The risk assessment and identification can be effectively established, resulting in secure product quality and appropriate occupational safety management.

Details

Industrial Management & Data Systems, vol. 118 no. 7
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 15 February 2018

Damjana Celcar

The purpose of this paper is to investigate the thermo-physiological comfort of male business garments made of common textiles, as well as business clothing that contains phase…

Abstract

Purpose

The purpose of this paper is to investigate the thermo-physiological comfort of male business garments made of common textiles, as well as business clothing that contains phase change materials (PCMs) as a lining or outerwear material. In view of the fact that people wear business clothing throughout the whole day in different environmental conditions, this study investigate the effect of PCMs incorporated in male business clothing systems on the thermo-physiological comfort of the wearer under different cold environmental conditions.

Design/methodology/approach

The influence of particular business garments on the thermo-physiological comfort of the wearer during different physical activities and cold environmental temperatures was determined experimentally with the help of study participants, as a change of two physiological parameters: mean skin temperature and heart rate. A questionnaire and an assessment scale were also used in order to evaluate the wearer’s subjective feeling of comfort. In this investigation, all tests with study participants were performed under artificially created environmental conditions in a climate chamber at different cold environmental temperatures ranging from 10°C to −5°C with increments of 5°C, and different physical activities that simulate as closely as possible real life activities such as sitting and walking.

Findings

The results of the performed research work show that PCMs provide a small temporary thermal effect that is reflected in small increases or decreases in mean skin temperature during changes in activity. Furthermore, it was concluded that the small effect of PCMs in business clothing systems on the thermo-physiological comfort of the wearer in a cold environment, which is shown as a change of mean skin temperature when subjects walk on a treadmill and subsequently move to a sitting position, should not be ignored in a cold environment where low skin temperatures were measured.

Practical implications

The results of this study demonstrate that the physiological parameters of thermo-physiological comfort, in combination with subjective evaluation, provide valuable information for textile and clothing manufactures as well as scientists and engineers involved in the design and development of new products with thermal comfort as a quality criterion.

Originality/value

The investigation shows that different environmental conditions, activity levels and thermal properties of clothing systems have a considerable impact on the physiological parameters of the subjects and subjective assessment of thermal comfort in a cold environment, and that PCMs incorporated in business clothing systems provide a small temporary thermal effect that is reflected in small increases or decreases in mean skin temperature during changes in activity, such as when subjects walk on a treadmill and subsequently move to a sitting position.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 November 2017

Sora Shin, Hae-Hyun Choi, Yung Bin Kim, Byung-Hee Hong and Joo-Young Lee

The purpose of this paper is to evaluate the effects of intermittent and continuous heating protocols using graphene-heated clothing and identify more effective body region for…

Abstract

Purpose

The purpose of this paper is to evaluate the effects of intermittent and continuous heating protocols using graphene-heated clothing and identify more effective body region for heating in a cold environment.

Design/methodology/approach

Eight males participated in five experimental conditions at an air temperature of 0.6°C with 40 percent relative humidity: no heating, continuous heating the chest, continuous heating the back, intermittent heating the chest, and intermittent heating the back.

Findings

The results showed that the electric power consumption of the intermittent heating protocol (2.49 W) was conserved by 71 percent compared to the continuous protocol (8.58 W). Rectal temperature, cardiovascular and respiratory responses showed no significant differences among the four heating conditions, while heating the back showed more beneficial effects on skin temperatures than heating the chest.

Originality/value

First of all, this study was the first report to evaluate cold protective clothing with graphene heaters. Second, the authors provided effective intermittent heating protocols in terms of reducing power consumption, which was able to be evaluated with the characteristics of fast-responsive graphene heaters. Third, an intermittent heating protocol on the back was recommended to keep a balance between saving electric power and minimizing thermal discomfort in cold environments.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 November 2021

Xinxin Fu, Yanjun Chen, Minggang Sun and Tengjiang Yu

The service performance for colored asphalt pavement is inevitably affected by the addition of different colorants, especially the challenge of low temperature environment in cold

Abstract

Purpose

The service performance for colored asphalt pavement is inevitably affected by the addition of different colorants, especially the challenge of low temperature environment in cold regions. Therefore, the purpose of study is to explore the effects of different colorants on the service performance for colored asphalt pavement and to provide a foundation for improving the applicability of colored asphalt pavement in cold regions.

Design/methodology/approach

In the study, three kinds of colorants (iron oxide red, iron oxide yellow, iron oxide green) were used to compare the influence of different colorants amounts and different colorants kinds on the service performance for colored asphalt pavement in cold regions. According to the characteristics of low temperature in cold regions, the effects of different colorants on the low temperature performance for colored asphalt pavement were studied.

Findings

The study shows that different colorants have different effects on the service performance of colored asphalt pavement. The high temperature performance increases with the increase of the colorants amount, but the low temperature performance is opposite. Additionally, the yellow colored asphalt pavement has more advantages of low temperature adaptation than the red and green colored asphalt pavement.

Originality/value

The study results provide a certain theoretical foundation for the application of colored asphalt pavement in cold regions and have certain value and significance for the further development of colored asphalt pavement.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 July 2020

Fatemeh Zahra Hourian Tabarestani, Fatemeh Mousazadegan and Nazanin Ezazshahabi

In the present work, the thermal insulation characteristics of multilayered mittens were studied in different airflow conditions.

Abstract

Purpose

In the present work, the thermal insulation characteristics of multilayered mittens were studied in different airflow conditions.

Design/methodology/approach

In this study, the thermal behavior of four groups of mittens consisting of one two-layer and three three-layer mittens containing nonwoven wadding materials with various weights and thicknesses was investigated during the exposure to airflows with different speeds. In order to evaluate the correlation between the heat transfer rates of different mittens with the human perception of cold, a set of pair-comparison tests was performed using Thurstone's law of comparative judgment.

Findings

The analysis of the results revealed that by an increment in the weight and the thickness of the wadding material, the thermal protection performance of mittens improves. Moreover, in the presence of airflow and by increasing its speed, due to the forced convective heat loss, the outer surface temperature of the mittens decreases and therefore the conductive heat transfer rate rises. This fact leads to the transfer of higher quantity of body warmth to the environment and thus feeling of coldness. According to the results, there was a proper correlation between the subjective perception of cold and the heat transfer rate of mittens. The statistical analysis of the results clarified that the effect of mitten's structural parameters and the airflow speed on the thermal protection behavior of mittens are significant at the confidence range of 95%.

Originality/value

Mitten is one of the important personal protective clothing, especially in cold environments. Thus, the thermal resistance of them has a prominent role in the protection of the hands and fingers from cold and frostbiting.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Book part
Publication date: 30 December 2004

David M. Penetar and Karl E. Friedl

Understanding how health status and physiological factors affect performance is a daunting task. This chapter will discuss physiological, behavioral, and psychological factors…

Abstract

Understanding how health status and physiological factors affect performance is a daunting task. This chapter will discuss physiological, behavioral, and psychological factors that influence or determine the capacity to fight, and will consider metrics that can be used to measure their status. The premise of this discussion is that there is a set of physiological and psychological factors that intimately affect performance and that the relative contribution of these variables is individually unique. These factors can be identified and assessed, and are amenable to modification. A fuller understanding of these variables can lead the effort to maintain and improve performance in the adverse and challenging environments of military operations.

Details

The Science and Simulation of Human Performance
Type: Book
ISBN: 978-1-84950-296-2

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 January 1992

W. Engelmaier

In early 1989 the original version of the Reliability Figures of Merit (FM) for the solder attachments of surface mount (SM) assemblies was published. That version of the FM was…

Abstract

In early 1989 the original version of the Reliability Figures of Merit (FM) for the solder attachments of surface mount (SM) assemblies was published. That version of the FM was specifically tailored for telecommunications environments. Misapplications of FMs to use environments, such as military applications and accelerated tests, pointed to a real need for generally applicable FMs. Adequate reliability of SM solder connections can only be assured with a ‘Design for Reliability’ based on solder joint behaviour and the underlying fatigue damage mechanisms. Perceived difficulties with a ‘Design for Reliability’ stem from the very complex and only partially understood nature of the interacting mechanisms underlying thermally induced solder joint fatigue, combined with the highly temperature, time, and stress‐dependent behaviour of some of the materials involved, especially solder. In this paper generic FMs are presented. These are simple design tools, easily applied by users unfamiliar with the underlying complexities of solder fatigue and the reliability assessment results are in Go/No‐go format. The oversimplifications contained in Version 1 of the FMs (originally thought necessary for simple design tools and limiting their applicability) are omitted, making these generic FMs more readily understood.

Details

Soldering & Surface Mount Technology, vol. 4 no. 1
Type: Research Article
ISSN: 0954-0911

Open Access
Article
Publication date: 10 July 2024

Tianyun Shi, Zhoulong Wang, Jia You, Pengyue Guo, Lili Jiang, Huijin Fu and Xu Gao

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is…

Abstract

Purpose

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is complex, and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters, perimeter intrusion and external environmental hazards. The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.

Design/methodology/approach

In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments, the research status is elaborated, and the latest research progress and achievements of the team are introduced. This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological, perimeter and external environmental situation perception methods for high-speed rail operation.

Findings

Based on the technical route of “situational awareness evaluation warning active control,” a technical system for monitoring the safety of high-speed train operation environments has been formed. Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters, perimeter intrusion and the external environment on high-speed rail safety. These works strongly support the improvement of China’s railway environmental safety guarantee technology.

Originality/value

With the operation of CR450 high-speed trains with a speed of 400 km per hour and the application of high-speed train autonomous driving technology in the future, new and higher requirements have been put forward for the safety of high-speed rail operation environments. The following five aspects of work are urgently needed: (1) Research the single factor disaster mechanism of wind, rain, snow, lightning, etc. for high-speed railways with a speed of 400 kms per hour, and based on this, study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment, revealing the coupling disaster mechanism of multiple influencing factors; (2) Research covers multi-source data fusion methods and associated features such as disaster monitoring data, meteorological information, route characteristics and terrain and landforms, studying the spatio-temporal evolution laws of meteorological disasters, perimeter intrusions and external environmental hazards; (3) In terms of meteorological disaster situation awareness, research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines; (4) In terms of perimeter intrusion, research a multi-modal fusion perception method for typical scenarios of high-speed rail operation in all time, all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and (5) In terms of external environment, based on the existing general network framework for change detection, we will carry out research on change detection and algorithms in the surrounding environment of high-speed rail.

Open Access
Article
Publication date: 16 October 2017

Bo Yan, Xiao-hua Wu, Bing Ye and Yong-wang Zhang

The Internet of Things (IoT) is used in the fresh agricultural product (FAP) supply chain, which can be coordinated through a revenue-sharing contract. The purpose of this paper…

7049

Abstract

Purpose

The Internet of Things (IoT) is used in the fresh agricultural product (FAP) supply chain, which can be coordinated through a revenue-sharing contract. The purpose of this paper is to make the three-level supply chain coordinate in IoT by considering the influence of FAP on market demand and costs of controlling freshness on the road.

Design/methodology/approach

A three-level FAP supply chain that comprises a manufacturer, distributor, and retailer in IoT is regarded as the research object. This study improves the revenue-sharing contract, determines the optimal solution when the supply chain achieves maximum profit in three types of decision-making situations, and develops the profit distribution model based on the improved revenue-sharing contract to coordinate the supply chain.

Findings

The improved revenue-sharing contract can coordinate the FAP supply chain that comprises a manufacturer, distributor, and retailer in IoT, as well as benefit all enterprises in the supply chain.

Practical implications

Resource utilization rate can be improved after coordinating the entire supply chain. Moreover, loss in the circulation process is reduced, and the circulation efficiency of FAPs is improved because of the application of IoT. The validity of the model is verified through a case analysis.

Originality/value

This study is different from other research in terms of the combination of supply chain coordination, FAPs, and radio frequency identification application in IoT.

Details

Industrial Management & Data Systems, vol. 117 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 16000