Search results

1 – 10 of over 2000
Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2607

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 September 2019

Rafael Quelho de Macedo, Rafael Thiago Luiz Ferreira and Kuzhichalil Jayachandran

This paper aims to present experimental and numerical analyses of fused filament fabrication (FFF) printed parts and show how mechanical characteristics of printed ABS-MG94…

Abstract

Purpose

This paper aims to present experimental and numerical analyses of fused filament fabrication (FFF) printed parts and show how mechanical characteristics of printed ABS-MG94 (acrylonitrile butadiene styrene) are influenced by the void volume fraction, cooling rate and residual thermal stresses.

Design/methodology/approach

Printed specimens were experimentally tested to evaluate the mechanical properties for different printing speeds, and micrographs were taken. A thermo-mechanical finite element model, able to simulate the FFF process, was developed to calculate the temperature fields in time, cooling rate and residual thermal stresses. Finally, the experimental mechanical properties and the microstructure distribution could be explained by the temperature fields in time, cooling rate and residual thermal stresses.

Findings

Micrographs revealed the increase of void volume fraction with the printing speed. The variations on voids were associated to the temperature fields in time: when the temperatures remained high for longer periods, less voids were generated. The Young's Modulus of the deposited filament varied according to the cooling rate: it decreased when the cooling rate increased. The influence of the residual thermal stresses and void volume fraction on the printed parts failure was also investigated: in the worst scenarios evaluated, the void volume fraction reduced the strength in 9 per cent, while the residual thermal stresses reduced it in 3.8 per cent.

Originality/value

This work explains how the temperature fields can affect the void volume fraction, Young's Modulus and failure of printed parts. Experimental and numerical results are shown. The presented research can be used to choose printing parameters to achieve desired mechanical properties of FFF printed parts.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 September 2019

Mostafa Yakout, M.A. Elbestawi, S.C. Veldhuis and S. Nangle-Smith

Residual stresses are induced during selective laser melting (SLM) because of rapid melting, solidification and build plate removal. This paper aims to examine the thermal cycle…

1129

Abstract

Purpose

Residual stresses are induced during selective laser melting (SLM) because of rapid melting, solidification and build plate removal. This paper aims to examine the thermal cycle, residual stresses and part distortions for selected aerospace materials (i.e. Ti-6Al-4V, stainless steel 316L and Invar 36) using a thermo-mechanical finite element model. The numerical results are validated and compared to experimental data.

Design/methodology/approach

The model predicts the residual stress and part distortion after build plate removal. The residual stress field is validated using X-ray diffraction method and the part distortion is validated using dimensional measurements.

Findings

The trends found in the numerical results agree with those found experimentally. Invar 36 had the lowest tensile residual stresses because of its lowest coefficient of thermal expansion. The residual stresses of stainless steel 316L were lower than those of Ti-6Al-4V because of its high thermal diffusivity.

Research limitations/implications

The model predicts residual stresses at the optimal SLM process parameters. However, using any other process conditions could cause void formation and/or alloying element vaporization, which would require the inclusion of melt pool physics in the model.

Originality/value

The paper explains the influence of the coefficient of thermal expansion and thermal diffusivity on the induced thermal stresses using experimental and numerical results. The methodology can be used to predict the part distortions and residual stresses in complex designs of any of the three materials under optimal SLM process parameters.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 April 2022

Hayri Sezer, Joseph Tang, AMM Nazmul Ahsan and Sudhir Kaul

The purpose of this study is to develop a novel comprehensive three-dimensional computational model to predict the transient thermal behavior and residual stresses resulting from…

Abstract

Purpose

The purpose of this study is to develop a novel comprehensive three-dimensional computational model to predict the transient thermal behavior and residual stresses resulting from the layer-by-layer deposition in the direct metal laser sintering process.

Design/methodology/approach

In the proposed model, time integration is performed with an implicit scheme. The equations for heat transfer are discretized by a finite volume method with thermophysical properties of the metal powder and an updated convection coefficient at each time step. The model includes convective and radiative boundary conditions for the exposed surfaces of the part and constant temperatures for the bottom surface on the build plate. The laser source is modeled as a moving radiative heat flux along the scanning pattern, while the thermal gradients are used to calculate directional and von Mises residual thermal stresses by using a quasi-steady state assumption.

Findings

In this study, four different scanning patterns are analyzed, and the transient temperature and residual thermal stress fields are evaluated from these patterns. It is found that the highest stresses occur where the laser last leaves off on its scanning pattern for each layer.

Originality/value

The proposed model is designed to capture the layer-by-layer deposition for a three-dimensional geometry while considering the effect of the instantaneous melting of the powder, melt pool, dynamic calculation of thermophysical properties, ease of parametrization of various process parameters and the vectorization of the code for computational efficiency. This versatile model can be used for process parameter optimization of other laser powder bed fusion additive manufacturing techniques. Furthermore, the proposed approach can be used for analyzing different scanning patterns.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 May 2019

Yong Cheng, Zhongxu Xiao, Haihong Zhu, Xiaoyan Zeng and Guoqing Wang

Selective laser melting (SLM) is a promising additive manufacturing technology in the field of complex parts’ fabrication. High temperature gradient and residual stress are vital…

Abstract

Purpose

Selective laser melting (SLM) is a promising additive manufacturing technology in the field of complex parts’ fabrication. High temperature gradient and residual stress are vital problems for the development of SLM technology. The purpose of this paper is to investigate the influence of substrate characteristics on the residual stress of SLMed Inconel 718 (IN718).

Design/methodology/approach

The SLMed IN718 samples were fabricated on the substrates with different characteristics, including pre-compression stress, materials and pre-heating. The residual stress at the center of the top surface was measured and compared through Vickers micro-indentation.

Findings

The results indicate that the residual stress reduces when the substrate contains pre-compression stress before the SLM process starts. Both substrate thermal expansion coefficient and thermal conductivity affect the residual stress. In addition to reducing the difference of thermal expansion coefficient between the substrate and the deposited material, the substrate with low thermal conductivity can also decrease the residual stress. Substrate pre-heating at 150°C reduces nearly 42.6 per cent residual stress because of the reduction of the temperature gradient.

Originality/value

The influence of substrate characteristics on the residual stress has been studied. The investigation results can help to control the residual stress generated in SLM processing.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2011

Dennis J. Buchanan, Michael J. Shepard and Reji John

The purpose of this paper is to analyze the residual stress relaxation in laser shock‐peened and shot‐peened IN100 subject to thermal exposure.

567

Abstract

Purpose

The purpose of this paper is to analyze the residual stress relaxation in laser shock‐peened and shot‐peened IN100 subject to thermal exposure.

Design/methodology/approach

Shot peening (SP) is a commonly used surface treatment that imparts compressive residual stress into the surface of components. The shallow depth of compressive residual stresses, and the extensive plastic deformation associated with SP, has been overcome by modern approaches such as laser shock peening (LSP). LSP surface treatment produces compressive residual stress magnitudes that are similar to SP that extend four to five times deeper, and with less plastic deformation. Retention of compressive surface residual stresses is necessary to retard initiation and growth of fatigue cracks under elevated temperature loading conditions.

Findings

Results indicated that the LSP processing retains a higher percentage of the initial residual stress profile over that of SP.

Originality/value

The retained residual stresses after thermal exposure of these surface treatment processes can be incorporated into a life prediction methodology that takes credit for beneficial compressive surface residual stresses to delay initiation and retard fatigue crack growth.

Details

International Journal of Structural Integrity, vol. 2 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 February 2022

Hamaid Mahmood Khan, Saad Waqar and Ebubekir Koç

The current investigation aims at observing the influence of the cooling channel on the thermal and residual stress behavior of the selective laser melting (SLM)316L uni-layer…

Abstract

Purpose

The current investigation aims at observing the influence of the cooling channel on the thermal and residual stress behavior of the selective laser melting (SLM)316L uni-layer thermo-mechanical model.

Design/methodology/approach

On a thermo-mechanical model with a cooling channel, the effect of scanning direction, parallel and perpendicular and scan spacing was simulated. The effect of underlying solid and powder bases was evaluated on residual stress profile and thermal variables at various locations.

Findings

The high heat dissipation of solid base due to high cooling rates and steep thermal gradients can reciprocate with smaller melt pool temperature and melt pool size. Given the same scan spacing, residual stresses were found lower when laser scanning was perpendicular to the cooling channel. Moreover, large scan spacing was found to increase residual stresses.

Originality/value

Cooling channels are increasingly being used in additive manufacturing; however, their effect on the residual stress behavior of the SLM component is not extensively studied. This research can serve as a foundation for further inquiries into the impact of base material design such as cooling channels on manufactured components using SLM.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2020

Shekhar Srivastava, Rajiv Kumar Garg, Vishal S. Sharma, Noe Gaudencio Alba-Baena, Anish Sachdeva, Ramesh Chand and Sehijpal Singh

This paper aims to present a systematic approach in the literature survey related to metal additive manufacturing (AM) processes and its multi-physics continuum modelling approach…

Abstract

Purpose

This paper aims to present a systematic approach in the literature survey related to metal additive manufacturing (AM) processes and its multi-physics continuum modelling approach for its better understanding.

Design/methodology/approach

A systematic review of the literature available in the area of continuum modelling practices adopted for the powder bed fusion (PBF) AM processes for the deposition of powder layer over the substrate along with quantification of residual stress and distortion. Discrete element method (DEM) and finite element method (FEM) approaches have been reviewed for the deposition of powder layer and thermo-mechanical modelling, respectively. Further, thermo-mechanical modelling adopted for the PBF AM process have been discussed in detail with its constituents. Finally, on the basis of prediction through thermo-mechanical models and experimental validation, distortion mitigation/minimisation techniques applied in PBF AM processes have been reviewed to provide a future direction in the field.

Findings

The findings of this paper are the future directions for the implementation and modification of the continuum modelling approaches applied to PBF AM processes. On the basis of the extensive review in the domain, gaps are recommended for future work for the betterment of modelling approach.

Research limitations/implications

This paper is limited to review only the modelling approach adopted by the PBF AM processes, i.e. modelling techniques (DEM approach) used for the deposition of powder layer and macro-models at process scale for the prediction of residual stress and distortion in the component. Modelling of microstructure and grain growth has not been included in this paper.

Originality/value

This paper presents an extensive review of the FEM approach adopted for the prediction of residual stress and distortion in the PBF AM processes which sets the platform for the development of distortion mitigation techniques. An extensive review of distortion mitigation techniques has been presented in the last section of the paper, which has not been reviewed yet.

Article
Publication date: 15 February 2021

Lan Li, Tan Pan, Xinchang Zhang, Yitao Chen, Wenyuan Cui, Lei Yan and Frank Liou

During the powder bed fusion process, thermal distortion is one big problem owing to the thermal stress caused by the high cooling rate and temperature gradient. For the purpose…

Abstract

Purpose

During the powder bed fusion process, thermal distortion is one big problem owing to the thermal stress caused by the high cooling rate and temperature gradient. For the purpose of avoiding distortion caused by internal residual stresses, support structures are used in most selective laser melting (SLM) process especially for cantilever beams because they can assist the heat dissipation. Support structures can also help to hold the work piece in its place and reduce volume of the printing materials. The mitigation of high thermal gradients during the manufacturing process helps to reduce thermal distortion and thus alleviate cracking, curling, delamination and shrinkage. Therefore, this paper aims to study the displacement and residual stress evolution of SLMed parts.

Design/methodology/approach

The objective of this study was to examine and compare the distortion and residual stress properties of two cantilever structures, using both numerical and experimental methods. The part-scale finite element analysis modeling technique was applied to numerically analyze the overhang distortions, using the layer-by-layer model for predicting a part scale model. The validation experiments of these two samples were built in a SLM platform. Then average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model.

Findings

The validation experiments results of average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model. It was found that they matched well with each other. From displacement and residual stress standpoint, by introducing two different support structure, two samples with the same cantilever beam can be successfully printed. In terms of reducing wasted support materials, print time and high surface quality, sample with less support will need less post-processing and waste energy.

Originality/value

Numerical modeling in this work can be a very useful tool to parametrically study the feasibility of support structures of SLM parts in terms of residual stresses and deformations. It has the capability for fast prediction in the SLMed parts.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2019

Rong Li and Jun Xiong

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially…

Abstract

Purpose

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially thin-walled parts. The purpose of this study is to present an investigation into predicting the residual stress distributions of a thin-walled component with geometrical features.

Design/methodology/approach

A coupled thermo-mechanical finite element model considering a general Goldak double ellipsoidal heat source is built for a thin-walled component with geometrical features. To confirm the accuracy of the model, corresponding experiments are performed using a positional deposition method in which the torch is tilted from the normal direction of the substrate. During the experiment, the thermal cycle curves of locations on the substrate are obtained by thermocouples. The residual stresses on the substrate and part are measured using X-ray diffraction. The validated model is used to investigate the thermal stress evolution and residual stress distributions of the substrate and part.

Findings

Decent agreements are achieved after comparing the experimental and simulated results. It is shown that the geometrical feature of the part gives rise to an asymmetrical transversal residual stress distribution on the substrate surface, while it has a minimal influence on the longitudinal residual stress distribution. The residual stress distributions of the part are spatially uneven. The longitudinal tensile residual stress is the prominent residual stress in the central area of the component. Large wall-growth tensile residual stresses, which may cause delamination, appear at both ends of the component and the substrate–component interfaces.

Originality/value

The predicted residual stress distributions of the thin-walled part with geometrical features are helpful to understand the influence of geometry on the thermo-mechanical behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000