Search results

1 – 10 of 914
Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 6 April 2023

Margaret Terry Orr and Liz Hollingworth

This paper explores the school leadership career outcomes, timing and educator evaluation of those who complete the Massachusetts Performance Assessment for Leaders (PAL) in…

Abstract

Purpose

This paper explores the school leadership career outcomes, timing and educator evaluation of those who complete the Massachusetts Performance Assessment for Leaders (PAL) in comparison with others who did not. It also compares outcomes for those with different PAL score completion requirements.

Design/methodology/approach

Using PAL assessment results and state employment data for years 2015 through 2019, the authors examined trends and timing in PAL completers' career advancement into an initial school leader position (assistant principal or principal), by assessment cohort (based on assessment year and passing (cut) score requirements) and with who never had to complete the assessment for licensure (non-PAL completers). Using regression analysis, the authors evaluated potential race/ethnicity and gender differences in advancement. Using chi-square tests of association, the authors compared non-PAL and PAL completers on their demographic attributes and on retention and promotion from assistant principal and on their educator evaluation scores. The authors also examined differences in advancement based on the cut score requirements and preparation pathways.

Findings

PAL completers made steady career advances over time and at faster rates than non-PAL completers. Further, PAL completers subject to higher cut score requirements advanced more quickly than those with lower or no score requirements. PAL completers' gender and race/ethnicity seemed to matter less in career advancement than was found in other studies. In 2019, almost half who advanced were employed in the same districts as they had been in 2014 and were more likely to be new leaders in urban districts. When compared with other career-related measures, PAL completers outperformed non-PAL completers who first became school leaders since 2014: they were more likely to be rated as exemplary on educator evaluation and more likely to be retained or promoted after two years in their first school leader position.

Originality/value

Until now little research has existed on the career effects of licensure assessments. Because it requires candidates to demonstrate proficiency in core areas of school leadership work, the PAL assessment appears to be a superior means of screening initial school leaders (based on rate of hiring) and of signaling future performance (based on subsequent educator evaluation ratings) than other assessment forms (such as the School Leader Licensure Assessment [SLLA] exam).

Details

Journal of Educational Administration, vol. 61 no. 4
Type: Research Article
ISSN: 0957-8234

Keywords

Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 September 2022

Yifeng Zhu, Ziyang Zhang, Hailong Zhao and Shaoling Li

Five-level rectifiers have received widespread attention because of their excellent performance in high-voltage and high-power applications. Taking a five-level rectifier with…

Abstract

Purpose

Five-level rectifiers have received widespread attention because of their excellent performance in high-voltage and high-power applications. Taking a five-level rectifier with only four-IGBT for this study, a sliding mode predictive control (SMPC) algorithm is proposed to solve the problem of poor dynamic performance and poor anti-disturbance ability under the traditional model predictive control with the PI outer loop.

Design/methodology/approach

First, mathematical models under the two-phase stationary coordinate system and two-phase synchronous rotating coordinate system are established. Then, the design of the outer-loop sliding mode controller is completed by establishing the sliding mode surface and design approach rate. The design of the inner-loop model predictive controller was completed by discretizing the mathematical model equations. The modulation part uses a space vector modulation technique to generate the PWM wave.

Findings

The sliding mode predictive control strategy is compared with the control strategy with a PI outer loop and a model predictive inner loop. The proposed control strategy has a faster dynamic response and stronger anti-interference ability.

Originality/value

For the five-level rectifier, the advantages of fast dynamic influence and parameter insensitivity of sliding mode control are used in the voltage outer loop to replace the traditional PI control, and which is integrated with the model predictive control used in the current inner loop to form a novel control strategy with a faster dynamic response and stronger immunity to disturbances. This novel strategy is called sliding mode predictive control (SMC).

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 February 2022

Asish Saha, Debasis Rooj and Reshmi Sengupta

This study aims to investigate the factors that drive housing loan default in India based on unique micro-level data drawn from a public sector bank's credit files with a national…

Abstract

Purpose

This study aims to investigate the factors that drive housing loan default in India based on unique micro-level data drawn from a public sector bank's credit files with a national presence in India. The authors address endogeneity in the loan to value ratio (LTV) while deciphering the drivers of default.

Design/methodology/approach

The study uses a probit regression approach to analyze the relationship between the probability of default and the explanatory variables. The authors introduce two instrumental variables to address the issue of endogeneity. The authors also add state-level demographic and several other control variables, including an indicator variable that captures the recent regulatory change. The authors’ analysis is based on 102,327 housing loans originated by the bank between January 2001 and December 2017.

Findings

The authors find that addressing the endogeneity issue is essential to specify default drivers, especially LTV, correctly. The nature of employment, gender, socio-religious category and age have a distinct bearing on housing loan defaults. Apart from the LTV ratio, the other key determinants of default are the interest rate, frequency of repayment, prepayment options and the loan period. The findings suggest that the population classification of branch location plays a significant role in loan default. The authors find that an increase in per capita income and an increase in the number of employed people in the state, which reflects borrowers' ability to pay by borrowers, reduce the probability of default. The change in the regulatory classification of loan assets by the Reserve Bank of India did not bear the main results.

Research limitations/implications

The non-availability of the house price index in analyzing the default dynamics in the Indian housing finance market for the period covered under the study has constrained our analysis. The applicability of the equity theory of default, strategic default, borrowers' characteristics and personality traits are potential research areas in the Indian housing finance market.

Practical implications

The study's findings are expected to provide valuable inputs to the banks and the housing finance companies to explore and formulate appropriate strategic options in lending to this sector. It has highlighted various vistas of tailor-making housing loan product offerings by the commercial banks to ensure and steady and healthy growth of their loan portfolio. It has also highlighted the regulatory and policy underpinnings to ensure the healthy growth of the Indian housing finance market.

Originality/value

The study provides a fresh perspective on the default drivers in the Indian housing finance market based on micro-level data. In our analysis, the authors find clear evidence of endogeneity in LTV and argue that any attempts to decipher the default drivers of housing loans without addressing the issue of endogeneity may lead to faulty interpretation. Therefore, this study is unique in recognizing endogeneity and has gone deeper in identifying the default drivers in the Indian housing market not addressed by earlier papers on the Indian housing market. The authors also control for the regulatory changes in the Indian housing finance market and include state-level control variables like per capita GDP and the number of workers per thousand to capture the borrowers' ability to pay characteristics.

Details

International Journal of Emerging Markets, vol. 18 no. 10
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 19 June 2023

Teng Wen, Xiaoyun Wei, Xuebao Li, Boyuan Cao and Zhibin Zhao

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal…

Abstract

Purpose

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal periodic voltage excitation.

Design/methodology/approach

Firstly, the boundary value problem of the transient electric field in the frequency domain is described, and the finite element equation of the FD-FEM is derived by Galerkin’s method. Secondly, the constrained electric field equation on the boundary in the frequency domain (FD-CEFEB) is also derived, which can solve the electric field intensity on the boundary and the dielectric interface with high accuracy. Thirdly, the calculation procedures of the FD-FEM with FD-CEFEB are introduced in detail. Finally, a numerical example of the press-packed insulated gate bipolar transistor under the working condition of the repetitive turn-on and turn-off is given.

Findings

The FD-CEFEB improves numerical accuracy of electric field intensity on the boundary and interfacial charge density, which can be achieved by modifying the existing FD-FEMs’ code in appropriate steps. Moreover, the proposed FD-FEM and the FD-CEFEB will only increase calculation costs by a little compared with the traditional FD-FEMs.

Originality/value

The FD-CEFEB can directly solve the electric field intensity on the boundary and the dielectric interface with high accuracy. This paper provides a new FD-FEM for the transient electric field in the non-sinusoidal steady state with high accuracy, which is suitable for combined insulation structure with a long time constant.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2023

Mohamed Abd Alsamieh

This study aims to present a numerical solution for the analysis of the influence of surface roughness as presented by a sinusoidal ripple of different amplitude and wavelength on…

Abstract

Purpose

This study aims to present a numerical solution for the analysis of the influence of surface roughness as presented by a sinusoidal ripple of different amplitude and wavelength on the performance of transient elastohydrodynamic lubrication at motion start-up under different operational parameters of entraining speed and load as well as different acceleration rates.

Design/methodology/approach

A statistical asperity micro-contact model represented by a sinusoidal ripple expressed by two parameters (wavelength and undeformed amplitude) is considered. The ball equation of motion is used to calculate the force on the ball as it starts to move. The time-dependent Reynolds equation is solved together with surface deformation and statistical asperity models using the Newton–Raphson technique with the Gauss–Seidel iteration method.

Findings

The behaviour of the film thickness was found to be strongly influenced by the acceleration rate for different ripple amplitude and wavelength parameters. The effect of increasing the final entraining speed will eventually lead to rapid film thickness build-up and increase the film thickness jump at the moment of motion start-up. The effect of increasing applied load is to reduce the deviation of the minimum film thickness jump at the start-up of motion, making its value approximately equal to the steady-state value over the entire run-time period.

Originality/value

Influence of surface roughness for various wavelength and undeformed amplitude on the performance of transient elastohydrodynamic lubrication at motion start-up is presented at different acceleration rates as well as for different operating parameters of entraining speed and load. Ball equation of motion is used to calculate the force on the ball as it starts to move.

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 November 2023

Wei Li, Yuxin Huang, Leilei Ji, Lingling Ma and Ramesh Agarwal

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Abstract

Purpose

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Design/methodology/approach

This study uses a full-flow field transient calculation method of mixed-flow pump based on a closed-loop model.

Findings

The findings show the hydraulic losses and internal flow characteristics of the piping system during the start-up process.

Research limitations/implications

Large computational cost.

Practical implications

Improve the accuracy of current numerical simulation results in transient process of mixed-flow pump.

Originality/value

Simplify the setting of boundary conditions in the transient calculation.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 19 September 2023

Cleyton Farias and Marcelo Silva

The authors explore the hypothesis that some movements in commodity prices are anticipated (news shocks) and can trigger aggregate fluctuations in small open emerging economies…

Abstract

Purpose

The authors explore the hypothesis that some movements in commodity prices are anticipated (news shocks) and can trigger aggregate fluctuations in small open emerging economies. This paper aims to discuss the aforementioned objective.

Design/methodology/approach

The authors build a multi-sector dynamic stochastic general equilibrium model with endogenous commodity production. There are five exogenous processes: a country-specific interest rate shock that responds to commodity price fluctuations, a productivity (TFP) shock for each sector and a commodity price shock. Both TFP and commodity price shocks are composed of unanticipated and anticipated components.

Findings

The authors show that news shocks to commodity prices lead to higher output, investment and consumption, and a countercyclical movement in the trade-balance-to-output ratio. The authors also show that commodity price news shocks explain about 24% of output aggregate fluctuations in the small open economy.

Practical implications

Given the importance of both anticipated and unanticipated commodity price shocks, policymakers should pay attention to developments in commodity markets when designing policies to attenuate the business cycles. Future research should investigate the design of optimal fiscal and monetary policies in SOE subject to news shocks in commodity prices.

Originality/value

This paper contributes to the knowledge of the sources of fluctuations in emerging economies highlighting the importance of a new source: news shocks in commodity prices.

Details

EconomiA, vol. 24 no. 2
Type: Research Article
ISSN: 1517-7580

Keywords

Article
Publication date: 15 September 2023

Prabhakaran Koothu Kesavan, Umashankar Subramaniam and Dhafer Jaber Almakhles

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet…

Abstract

Purpose

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet synchronous motor (PMSM) to improve the transient response of the system.

Design/methodology/approach

Proportional integral (PI) plus PI controller and the proposed PDF plus PDFF controller are designed, stability analysis is performed using the extended root locus method, and the effect of the damping coefficient is also extensively studied to validate the robustness of the proposed controller.

Findings

When compared to a cascaded PI plus PI controller, the proposed control approach has a much shorter settling time for the entire system and a 50% reduction in overshoot in stator current under extensive variations in speed with load disturbance.

Originality/value

The proposed controller is programmed into an FPGA Altera Cyclone II and applied to a 1.5 kW laboratory prototype PMSM drive. The effectiveness of the proposed methods has been demonstrated experimentally throughout a wide variable speed range, from 0 to 157 rad/s at different load conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Access

Year

Last 12 months (914)

Content type

Article (914)
1 – 10 of 914