Search results

1 – 10 of 141
Open Access
Article
Publication date: 9 July 2024

Martina Glogar and Sanja Ercegovic Razic

In the field of research on the application of digital printing to textile materials, there are still many research issues that arise from the very demanding interaction of…

Abstract

Purpose

In the field of research on the application of digital printing to textile materials, there are still many research issues that arise from the very demanding interaction of digital printing technology and the complex, heterogeneous surface system of textile materials. This is precisely why the area of pre-treatment of textile materials is in need of research, and the purpose of this research was to establish the level of influence of physical and chemical activation of the textile surface with plasma and the possibility of improving the quality of the print and colour reproduction.

Design/methodology/approach

The paper deals with the possibility of applying argon and oxygen cold low-pressure plasma in the processing of cellulose knitted fabrics, with the aim of improving the quality of the print and colour reproduction in digital pigment inkjet printing. The selected raw material samples were 100% raw cotton and lyocell. After plasma treatment, the samples were printed by digital ink jet printing with water-based pigment printing ink. An analysis of the micromorphological structure of untreated and plasma-treated samples before and after printing was carried out, and a comparative analysis of the colour of the printed elements was carried out depending on the pre-treatment.

Findings

The conducted research showed a positive influence of plasma pre-treatment on the coverage of the fibre surface with pigments, the uniformity of pigment distribution along the fibre surface and the uniformity of the distribution of the polymeric binder layer. This has a positive effect on colour reproduction. Also, certain improvements in colourfastness to washing were obtained.

Research limitations/implications

Considering the complexity of the topic, although exhaustive, this research is not sufficient in itself, but opens up new questions and gives ideas for further research that must be carried out in this area.

Practical implications

Also, this kind of research contributes to the possibility of adopting the idea of industrial plasma transformation, as an ecologically sustainable functionalisation of textiles, which has not yet been established.

Originality/value

This research is certainly a contribution to the establishment of acceptable textile pre-treatment methods in the field of digital printing, as one of the key quality factors in digital textile printing (DTP). Considering the still large number of obstacles and unanswered questions encountered in the field of digital printing on textiles, this kind of research is a strong contribution to the understanding of the fundamental mechanisms of the complex interaction between printing ink and textile.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 June 2024

Duygu Yavuzkasap Ayakta, Şule Altun Kurtoğlu and Demet Yilmaz

Wool fiber is accepted as one of the natural and renewable sources and has been used in the apparel and textile industry since ancient times. However, wool fiber has the highest…

Abstract

Purpose

Wool fiber is accepted as one of the natural and renewable sources and has been used in the apparel and textile industry since ancient times. However, wool fiber has the highest global warming potential value among conventional fibres due to its high land use and high methane gas generation. This study aimed to recycle the wool fabric wastes and also to create a mini eco-collection by using the produced yarns.

Design/methodology/approach

This manuscript aimed to evaluate the fabric wastes of a woolen fabric producer company. Fabric wastes were opened with two different opening systems and fiber properties were determined. First, conventional ring yarns were produced in the company’s own spinning mill by mixing the opened fibres with the long fiber wastes of the company. In addition, opening wastes were mixed with different fibres (polyester, long wool waste, and Tencel fibres) between 25% and 70% in the short-staple yarn spinning mill and used in the production of conventional ring and OE-rotor yarns. Most of the yarns contained waste fibres at 50%. Recycled and virgin yarns were used as a weft and warp yarn and a total of 270 woven fabric samples were obtained and fabric properties were examined. Also, a fabric collection was created. A life cycle assessment (LCA) was made for one of the selected yarns.

Findings

At the end of the study, it was determined that it was possible to produce yarn and fabric samples from fiber blends containing high waste fiber ratios beyond 50%. All the woven fabric samples produced from conventional ring and OE-rotor yarns gave higher breaking, tearing and stitch slip strength values in the weft and warp direction than limit quality values of the company. In addition, abrasion resistance and WIRA steam stability properties of the fabric samples were also sufficient. Environmental analysis of the recycling of the wastes showed a possible decrease of about 9940034.3 kg CO2e per year in the global warming potential. In addition, fiber raw material expenses reduced yarn production cost about 50% in case of opened fabric waste usage. However, due to insufficient pilling resistance results, it was decided to evaluate the woven fabrics for the product groups such as shawls and blankets, where pilling resistance is less sought.

Originality/value

The original aspects of the article can be summarized under two headings. First, there are limited studies on the evaluation of wool wastes compared to cotton and polyester fibres and the number of samples examined was limited. However, this study was quite comprehensive in terms of opening type (rag and tearing), spinning systems (long and short spinning processes), fiber blends (waste 100% and blends with polyester, long wool waste and Tencel fibres) and yarn counts (coarser and finer). Recycled and virgin yarns were used as a weft and warp yarn and a total of 270 woven fabric samples were obtained using different colour combinations and weave types. All processes from fabric waste to product production were followed and evaluated. Life cycle assessment (LCA) and cost analysis was also done. The second unique aspect is that the problem of a real wool company was handled by taking the waste of the woolen company and a collection was created for the customer group of the company. Production was made under real production conditions. Therefore, this study will provide important findings to the research field about recycling, sustainability etc.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 June 2024

Burak Sari, Memik Bunyamin Uzumcu and Kubra Ozsahin

The study aimed to investigate the impact of mechanically recycled cotton fibres from pre-consumer waste, blended with virgin cotton at varying ratios, on the mechanical and…

Abstract

Purpose

The study aimed to investigate the impact of mechanically recycled cotton fibres from pre-consumer waste, blended with virgin cotton at varying ratios, on the mechanical and fastness properties of knitted fabrics.

Design/methodology/approach

Single jersey fabrics were produced using open-end rotor yarns with two different yarn counts, which were made from cotton blends obtained at three different mechanical recycled cotton blend ratios. The fabrics were then comparatively analysed for pilling resistance, bursting strength, dimensional stability, and fastness to perspiration, water, and rubbing. The investigations included fabrics made from 100% virgin cotton to determine the impact of mechanically recycled cotton fibres on the final fabric properties.

Findings

It was observed that using MR-CO at different ratios generally produced results similar to the usage properties obtained when using virgin cotton.

Originality/value

The study looked in detail at the effect of using mechanically recycled cotton (MR-CO) on the yarn properties and the mechanical and colour fastness properties of the fabrics produced using them. It was found that MR-CO has the potential to be an alternative fibre source to virgin cotton, not only mechanically but also in terms of colour fastness. Previous studies have commonly used MR-CO in fixed ratios or by incorporating various fibres into the blend. However, in this study, we determined the suitability of fabrics for their intended use by gradually increasing the MR-CO blend ratios and more clearly assessing the impact of MR-CO on fabric properties.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 May 2024

Gizem Karakan Günaydın, Erhan Kenan Çeven and Nejla Çeven

The paper aims to provide an investigation about the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Abstract

Purpose

The paper aims to provide an investigation about the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Design/methodology/approach

The paper evaluates the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics. Twill drapery fabrics with 18 Tex linen warp yarn where two types of weft yarns were utilized respectively with the order of “A” yarn and “B” yarn. 58 Tex Lyocell Linen blended first weft yarn (A yarn) was kept constant and the second weft yarn (B yarn) varied in different yarn structures and yarn count. Thermal comfort properties such as thermal conductivity, thermal resistivity, thermal absorptivity, fabric thickness were measured by means of Alambeta device. Correlation matrix between the thermal properties was also displayed. Air permeability results were obtained by using SDL Atlas Digital Air Permeability Tester Model M 021 A. One way analysis of variance (ANOVA) test was performed in order to investigate the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Findings

In this paper, weft yarn type was found as a significant factor on some of the thermal comfort properties such as thermal conductivity, thermal resistivity, thermal absorptivity, fabric thickness and on the air permeability properties.

Originality/value

There are limited works related to evaluation of some thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 June 2024

Meghana Kammeta and N.K. Palaniswamy

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and…

Abstract

Purpose

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and outerwear maximize comfort. The primary objective of this research is to investigate the influence of layering outerwear on innerwear, as well as the air gap between two layers, on thermal comfort properties.

Design/methodology/approach

In this study, a total of 12 combinations were created from four vest fabrics and three T-shirt fabrics. The thermal properties (thermal conductivity, thermal resistance, thermal absorptivity, thermal diffusion and peak heat flow) were evaluated for the individual inner and outer layers. Each inner layer was layered with an outer layer to observe the effect of layering on the thermal properties. An air gap of 2 mm was introduced between the inner and outer layers to study the effect of air gap on thermal properties.

Findings

Tencel fibre exhibits higher thermal conductivity and absorptivity than cotton and polyester. Upon layering an outer layer on an inner layer, the thermal conductivity and thermal absorptivity increase to a slight extent, thermal resistance and diffusion increase drastically and the peak heat flow reduces. With an air gap between the two layers, the thermal conductivity did not improve, the difference in thermal resistance among all the combinations reduced, the thermal absorptivity of the combination textiles was lower than that of the innerwear alone, the thermal diffusion increased and the peak heat flow diminished for all the combinations.

Practical implications

In practice, this comprehensive thermal comfort analysis provides specific combinations of inner and outer articles of clothing that are most appropriate for enhancing comfort during the summer season.

Originality/value

Though there are many studies on the effect of multilayer fabrics on thermal properties, no extensive research analyses the influence of innerwear and outerwear combinations on thermal comfort properties.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Book part
Publication date: 1 July 2024

Olga B. Digilina and Elza R. Gasimova

The research aims to identify the importance of the Republic of Türkiye in the global textile market. The research methodology is based on basic methods of scientific cognition…

Abstract

The research aims to identify the importance of the Republic of Türkiye in the global textile market. The research methodology is based on basic methods of scientific cognition, such as analysis, synthesis, deduction, and induction. From the particular methods used, it is worth highlighting the applicable comparison method. During the research, the authors carried out a content analysis, mainly of scientific works by Turkish scientists and news from the Turkish media. The research object is the global textile industry market. Nowadays, Türkiye faces damaged industrial buildings and an acute labor shortage. The country will need to spend a lot of time and efforts to restore its former production capacity in economically important regions, which will affect the country's export potential. COVID-19 has greatly affected the state of various sectors of the economy; the global textile market is no exception. Unlike other sectors of the economy, the global textile market recovered quickly; by 2021, it had regained its production capacity. In turn, Türkiye was even able to exceed its exports and increase its role in the world market. The country did not have time to reach new heights: on February 6, 2023, several powerful earthquakes occurred in economically important provinces of Türkiye. Most of them are provinces of the expensive the Southeastern Anatolia Project (GAP) project, where 60% of the cotton of all Türkiye is produced, and the population mainly works in the textile industry.

Details

Development of International Entrepreneurship Based on Corporate Accounting and Reporting According to IFRS
Type: Book
ISBN: 978-1-83797-669-0

Keywords

Article
Publication date: 25 July 2024

Sudev Dutta and Payal Bansal

Sustainable textiles have become imperative in mitigating the adverse environmental and social impacts of the textile industry. This paper aims to synthesize recent advancements…

Abstract

Purpose

Sustainable textiles have become imperative in mitigating the adverse environmental and social impacts of the textile industry. This paper aims to synthesize recent advancements and key considerations in sustainable textile development, emphasizing their role in promoting environmental stewardship, social responsibility and economic viability.

Design/methodology/approach

The literature search has been conducted by identifying and articulating the previous studies related to integrating the latest cutting-edge techniques with functional textiles.

Findings

Future-generation textiles (FGTs), which incorporate state-of-the-art developments in materials, technologies and functionalities, herald a paradigm-shifting period in the textile industry. FGTs mark a new era in this dynamic world by igniting conversations about their mechanisms, problems, progress to date and potential future applications. This investigation covers a wide range of topics, including wearable electronics, nanotechnology, 3D printing, recycling, machine learning and energy harvesting. Key components include sustainability, functionality, intelligent integration, advanced manufacturing processes and multifunctionality. The paper highlights the potential benefits of smart textiles, wearable technology, improved performance and sustainability through advances in customization and security.

Originality/value

It is an original review work. This paper will be helpful for manufacturers and researchers in the smart wearable textile sector in developing innovative techniques for multifunctional garments by integrating cutting-edge technology.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 27 May 2024

Georgy Sunny and T. Palani Rajan

The purpose of the project is to explore the biosoftening of raw areca nut fibers using two different biological retting methods and assess their impact on fiber properties for…

Abstract

Purpose

The purpose of the project is to explore the biosoftening of raw areca nut fibers using two different biological retting methods and assess their impact on fiber properties for improved spinning. The study aims to contribute to the fashion industry’s shift toward sustainability.

Design/methodology/approach

The project involves collecting raw brown areca shells, subjecting them to two retting methods (stagnant water retting and changing water daily retting) and then extracting and drying the fibers. Various physical and chemical properties of the fibers are measured to evaluate their suitability for spinning.

Findings

The stagnant water retting method, especially the fibers obtained on the second day, showed improved properties in terms of fiber strength, elongation, fineness and cellulose content, making them suitable for spinning applications. The method also resulted in better moisture regain.

Research limitations/implications

The study focused on two retting methods and a limited timeframe. Further research could explore additional techniques and durations. The labor-intensive nature of the daily changing water retting method may have implications for scalability.

Practical implications

The project demonstrates a cost-effective and sustainable method for converting agricultural waste (areca nut husks) into valuable fibers suitable for various end users.

Social implications

The research supports the fashion industry’s sustainability efforts by promoting the use of eco-friendly natural fibers, potentially benefiting rural farming communities.

Originality/value

The project highlights the innovative use of areca nut fibers and their potential to contribute to sustainable fashion. The stagnant water retting method is presented as a reliable and effective approach for improving fiber properties. Additionally, all fiber testing was exclusively conducted at the South India Textile Research Association (SITRA), with sponsorship from the industry and support from the Ministry of Textiles, Government of India.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 February 2024

Aşkin Özdağoğlu, Eda Acar, Mücella Güner and Ayşegül Çetmeli Bakadur

The textile industry harms the environment at every stage of production, from the acquisition of raw materials to the disposal of finished products. It is very important for the…

Abstract

Purpose

The textile industry harms the environment at every stage of production, from the acquisition of raw materials to the disposal of finished products. It is very important for the textile industry to adapt to the basic policies on environmental sensitivity and sustainability to keep up with the transformation in production processes and the rapid changes occurring around the world in order to exist in global competition. Within the scope of sustainable development goals, it is of great importance to measure and evaluate indicators of all processes of the sector. This paper aims to present application of multi-criteria decision making (MCDM) methods for the assessment of sustainable development in textile industry.

Design/methodology/approach

The data of a multinational clothing company’s four-year sustainability performance between 2018 and 2021 were evaluated under 22 sustainability parameters determined using two new MCDM techniques, namely the combined consensus solution method and multi-attribute ideal real comparative analysis. In determining the criteria, priority key indicators were determined by taking into account the sector’s relationship with the environment, raw material consumption and social adequacy.

Findings

According to the application results of both methods, the year 2021 shows the best performance. It has been seen that the sustainability performance of the Inditex group has increased over the years and the results of the applied models support each other. It can be suggested that the proposed approach be applied to evaluate the progress in the textile sector with the relevant data on a particular company or on a macro scale.

Originality/value

This study makes an important contribution to the field in terms of the fact that the methods used are recent and have no application in the field of textiles. It allows the evaluation of different sustainability criteria together using a single method. It is very important to share data on sustainability indicators with customers, employees, suppliers, investors, partner organizations and society and evaluate performance. Analyzing sustainability performance on the basis of annual reports is important in terms of identifying good practices, sharing them with the community and setting an example. In addition, using scientific methods in the evaluation of the sustainability report data published by companies regularly provides significant feedback for policymakers and academics.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 141