Search results

1 – 10 of over 9000
Article
Publication date: 16 June 2021

Zhu Hongbiao, Yueming Liu, Weidong Wang and Zhijiang Du

This paper aims to present a new method to analyze the robot’s obstacle negotiation based on the terramechanics, where the terrain physical parameters, the sinkage and the…

Abstract

Purpose

This paper aims to present a new method to analyze the robot’s obstacle negotiation based on the terramechanics, where the terrain physical parameters, the sinkage and the slippage of the robot are taken into account, to enhance the robot’s trafficability.

Design/methodology/approach

In this paper, terramechanics is used in motion planning for all-terrain obstacle negotiation. First, wheel/track-terrain interaction models are established and used to analyze traction performances in different locomotion modes of the reconfigurable robot. Next, several key steps of obstacle-climbing are reanalyzed and the sinkage, the slippage and the drawbar pull are obtained by the models in these steps. In addition, an obstacle negotiation analysis method on loose soil is proposed. Finally, experiments in different locomotion modes are conducted and the results demonstrate that the model is more suitable for practical applications than the center of gravity (CoG) kinematic model.

Findings

Using the traction performance experimental platform, the relationships between the drawbar pull and the slippage in different locomotion modes are obtained, and then the traction performances are obtained. The experimental results show that the relationships obtained by the models are in good agreement with the measured. The obstacle-climbing experiments are carried out to confirm the availability of the method, and the experimental results demonstrate that the model is more suitable for practical applications than the CoG kinematic model.

Originality/value

Comparing with the results without considering Terramechanics, obstacle-negotiation analysis based on the proposed track-terrain interaction model considering Terramechanics is much more accurate than without considering Terramechanics.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 March 2011

Mohammad Rahim and Seyed Móhammad‐Bagher Malaek

The purpose of this paper is to present a novel approach in terrain following (TF) flight using fuzzy logic. The fuzzy controller as presented in this work decides where and how…

Abstract

Purpose

The purpose of this paper is to present a novel approach in terrain following (TF) flight using fuzzy logic. The fuzzy controller as presented in this work decides where and how the aircraft needs to change its altitude. The fast decision‐making nature of this method promises real‐time applications even for tough terrains in terms of shape and peculiarities. The method could always assist to design trajectories in an off‐line manner.

Design/methodology/approach

To achieve the aforementioned goal, the method effectively incorporates the dynamics of the aircraft. Basically, the mathematical method employs special relationships among existing slope of the terrain and its derivative together with aircraft flying speed and height above the ground to construct suitable fuzzy rules. The fuzzification method is based on Sugeno and three rule‐sets are used for fuzzy structure. These rules are implemented using Fuzzy Logic Toolbox in MATLAB.

Findings

Different case studies conducted for flights in XZ‐plane show the effectiveness of the method as compared to other existing methods available to the authors. The results illustrate a good tracking based on the fuzzy approach while using both 18 and 27 rules with respect to the optimal approach. Furthermore, it is shown that decreasing number of rules from 27 to 18 rules causes only minor changes in the solution.

Practical implications

The current work offers a new approach in low‐level flights where maintaining a suitable height above the ground is essential. This is especially important for civil aircraft approaching an airport with low or non‐visibility and during aborted landing manoeuvres. The domain of the current work is however confined to only planning of TF manoeuvres. Nevertheless, the work could be expanded into TF/terrain avoidance and three‐dimensional manoeuvres which are not in the scope of the current work.

Originality/value

The current work addresses the problems associated with low‐level flight; such as TF using artificial intelligence and fuzzy logic. The provided intelligence helps the aircraft conduct TF manoeuvres by understanding the general patterns of the existing terrain. The method is fast enough to be applied for real‐time applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 16 October 2017

He Xu, Yan Xu, Peiyuan Wang, Hongpeng Yu, Ozoemena Anthony Ani and X.Z. Gao

The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning…

194

Abstract

Purpose

The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning sensors have rarely been applied to the measurement of wheel-terrain contact angle for wheeled mobile robots (WMRs) in previous studies; however, it is an effective way to measure wheel-terrain contact angle directly with the advantages of simple, fast and high accuracy.

Design/methodology/approach

First, kinematics model for a WMR moving on rough terrain was developed, taking into consideration wheel slip and wheel-terrain contact angle. Second, the measurement principles of wheel-terrain contact angle using laser scanning sensors was presented, including “rigid wheel - rigid terrain” model and “rigid wheel - deformable terrain” model.

Findings

In the proposed approach, the measurement of wheel-terrain contact angle using laser scanning sensors was successfully demonstrated. The rationality of the approach was verified by experiments on rigid and sandy terrains with satisfactory results.

Originality/value

This paper proposes a novel, fast and effective wheel-terrain contact angle measurement approach for WMRs moving on both rigid and deformable terrains, using laser scanning sensors.

Details

Industrial Robot: An International Journal, vol. 44 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2005

Homayoun Najjaran and Andrew A. Goldenberg

Describes a dual‐arm mobile manipulator that can autonomously scan natural terrain using a typical handheld landmine detector in a manner similar to a human operator.

Abstract

Purpose

Describes a dual‐arm mobile manipulator that can autonomously scan natural terrain using a typical handheld landmine detector in a manner similar to a human operator.

Design/methodology/approach

Presents a terrain‐scanning robot that consists of two articulated arms mounted on an off‐road remotely operated vehicle. One arm carries a laser and four ultrasonic rangefinders to build a terrain map. The map is used in real time to generate an obstacle‐free path for the second arm that manipulates the landmine detector autonomously. The arms are mounted on the vehicle that is controlled by an operator from a safe distance. Motion planning and control of the robot is carried out using an embedded computer that is linked to a host computer to transmit the detector data and operator commands.

Findings

Finds that the terrain‐scanning robot can effectively manipulate a relatively large landmine detector on rugged terrain with undulations and obstacles.

Research limitations/implications

Proposes real‐time motion planning that may be equally applicable to other mobile manipulators.

Practical implications

Provides a technology that together with state‐of‐the‐art landmine sensors will offer a safe solution for detecting hidden landmines and clearing them from the postwar countries.

Originality/value

Introduces the concept of a dual‐arm mobile terrain scanning robot for landmine detection in off‐road missions and civilian areas where truck‐mounted detectors are inefficient.

Details

Industrial Robot: An International Journal, vol. 32 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 September 2015

Fan Yang, Guoyu Lin and Weigong Zhang

This paper aims to gain the real-time terrain parameters of the battlefield for the evaluation of military vehicle trafficability. In military missions, improvements in vehicle…

Abstract

Purpose

This paper aims to gain the real-time terrain parameters of the battlefield for the evaluation of military vehicle trafficability. In military missions, improvements in vehicle mobility have the potential to greatly increase the military operational capacity, in which vehicle trafficability plays a significant role.

Design/methodology/approach

In this framework, an online terrain parameter estimation method based on the Gauss-Newton algorithm is proposed to estimate the primary terrain mechanical parameters. Good estimation results are indicated, unless the initial values involved are properly selected. Correspondingly, a method of terrain classification is then presented to contribute to the selection of the initial values. This method uses the wavelet packet transform technique for feature extraction and adopts the support vector machine algorithm for terrain classification. Once the terrain type is identified, advices can be given on the initial value selection referring to the empirical terrain parameters.

Findings

On the basis of a dynamic testing system suitable for real military vehicles, the proposed algorithms are validated. High estimation accuracy of the terrain parameters is indicated on sandy loam, and good classification performance is demonstrated on four tested terrains.

Originality/value

The presented algorithm outperforms the existing methods, which not only realizes the online terrain parameter estimation but also develops the estimation accuracy. Moreover, its effectiveness is confirmed by real vehicle tests in practice.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 April 2020

Chengguo Zong, Zhijian Ji, Junzhi Yu and Haisheng Yu

The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot…

Abstract

Purpose

The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot interaction in unstructured environment. The study aims to present the mechanical structure and human–robot interaction control system of the tracked robot and analyze the static stability of the robot working in three terrains, i.e. rugged terrain, sloped terrain and stairs.

Design/methodology/approach

The paper presents the mechanical structure and human–robot interaction control system of the tracked robot. To prevent the detachment of the tracks during obstacle navigation, a new type of passively adaptive device based on the relationship between the track’s variable angle and the forces is presented. Then three types of rough terrain are chosen to analyze the static stability of the tracked robot, i.e. rugged terrain, sloped terrain and stairs.

Findings

This paper provides the design method of the tracked robot. Owing to its appropriate dimensions, good mass distribution and limited velocity, the tracked robot remains stable on the complex terrains. The experimental results verify the effectiveness of the design method.

Originality/value

The theoretical analysis of this paper provides basic reference for the structural design of tracked robots.

Details

Assembly Automation, vol. 40 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 January 2021

P.S. Ramesh and J.V. Muruga Lal Jeyan

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to…

Abstract

Purpose

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to operate from a runway. Therefore, the operating terrain plays an important role in the deployment and employment of the Mini UAS. However, there is limited published work in this area. The impact of terrain is more critical for military applications than civilian applications. The purpose of this paper is to explore the implications of various types of terrain on the employment and deployment of Mini UAS.

Design/methodology/approach

This paper explores the implications of various types of terrain on the employment and deployment of Mini UAS.

Findings

Mini UAS with field deployable requirements is often launched within the tactical battle area in case of military applications or in close proximity to the intended target area for civilian applications. Due to the size and weight of the Mini UAS, launch and recovery becomes an important factor to be considered. Rotary wing or fixed-wing vertical take-off and landing configuration UAS overcomes the limitations of Mini UAS and hence it is the preferred option. Impact of the terrain is significantly higher for military applications as compared to civil applications. Mountain terrain is the most challenging for Mini UAS operations.

Practical implications

This paper will help the designers configure the UAS as per the operating terrain.

Originality/value

Terrain affects the deployment and employment of Mini UAS and the capabilities of the system with respect to terrain in which it is expected to operate must be considered during the design of a Mini UAS. The paper will help the designers configure the UAS as per the operating terrain.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 26 July 2021

Radha S., G. Josemin Bala and Nagabushanam P.

Energy is the major concern in wireless sensor networks (WSNs) for most of the applications. There exist many factors for higher energy consumption in WSNs. The purpose of this…

Abstract

Purpose

Energy is the major concern in wireless sensor networks (WSNs) for most of the applications. There exist many factors for higher energy consumption in WSNs. The purpose of this work is to increase the coverage area maintaining the minimum possible nodes or sensors.

Design/methodology/approach

This paper has proposed multilayer (ML) nodes deployment with distributed MAC (DS-MAC) in which nodes listen time is controlled based on communication of neighbors. Game theory optimization helps in addressing path loss constraints while selecting path toward base stations (BS).

Findings

The simulation is carried out using NS-2.35, and it shows better performance in ML DS-MAC compared to random topology in DS-MAC with same number of BS. The proposed method improves performance of network in terms of energy consumption, network lifetime and better throughput.

Research limitations/implications

Energy consumption is the major problem in WSNs and for which there exist many reasons, and many approaches are being proposed by researchers based on application in which WSN is used. Node mobility, topology, multitier and ML deployment and path loss constraints are some of the concerns in WSNs.

Practical implications

Game theory is used in different situations like countries whose army race, business firms that are competing, animals generally fighting for prey, political parties competing for vote, penalty kicks for the players in football and so on.

Social implications

WSNs find applications in surveillance, monitoring, inspections for wild life, sea life, underground pipes and so on.

Originality/value

Game theory optimization helps in addressing path loss constraints while selecting path toward BS.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 December 2019

Fei Guo, Shoukun Wang, Junzheng Wang and Huan Yu

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse…

Abstract

Purpose

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse rough three-dimensional (3-D) terrain.

Design/methodology/approach

Presented is a novel wheel-quadruped mobile robot with parallel driving mechanisms and based on the Stewart six degrees of freedom (6-DOF) platform. The task for traversing rough terrain is decomposed into two prospects: one is the configuration selection in terms of a local foothold cost map, in which the kinematic feasibility of parallel mechanism and terrain features are satisfied in heuristic search planning, and the other one is a whole-body controller to complete smooth and continuous motion transitions.

Findings

A fan-shaped foot search region focuses on footholds with a strong possibility of becoming foot placement, simplifying computation complexity. A receding horizon avoids kinematic deadlock during the search process and improves robot adaptation.

Research limitations/implications

Both simulation and experimental results validated the proposed scenario available and appropriate for quadruped locomotion to traverse challenging 3-D terrains.

Originality/value

This paper analyzes kinematic workspace for a parallel robot with 6-DOF Stewart mechanism on both body and foot. A fan-shaped foot search region enhances computation efficiency. Receding horizon broadens the preview search to decrease the possibility of deadlock minima resulting from terrain variation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 2006

S. Agrawal, J.P. Antunes, E. Theron, M. Truscott and D.J. de Beer

The purpose of the present work is to develop a methodology for making physical models of catchment areas and terrains by rapid prototyping (RP) using geographic information…

1358

Abstract

Purpose

The purpose of the present work is to develop a methodology for making physical models of catchment areas and terrains by rapid prototyping (RP) using geographic information systems (GIS) data. It is also intended to reduce data loss by minimising intermediate data translations.

Design/methodology/approach

The GIS data of a catchment area or a terrain were directly translated to an stereo lithography (STL) file. The STL surface was then manipulated in Magics‐RP to obtain a solid STL part, which can then be downloaded to a RP machine to obtain a physical model or representation of a terrain or catchtment area.

Findings

Intricate geometries of landforms were created with ease and great accuracy in RP machines. Terrain models were created in less time and lower cost than with conventional methods.

Research limitations/implications

DEM ASCII XYZ (digital elevation model) data were used to input the required GIS data of specific terrains. Software can be developed for translation and manipulation of DEM, STL and other relevant file formats. This will eliminate any data loss associated with intermediate file transfer.

Practical implications

Terrain models were created with ease and great accuracy in RP machines. It takes less time and can be done more cost‐effectively. Terrain models have intricate geometries and for complex models, it may take months to make using conventional methods.

Originality/value

STL surfaces were obtained directly from GIS data for terrain modeling. This work fulfils the need of terrain modeling for catchment management, town‐planning, road‐transport planning, architecture, military applications, geological education, etc.

Details

Rapid Prototyping Journal, vol. 12 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 9000