Search results

1 – 10 of over 1000
Article
Publication date: 21 September 2015

Fan Yang, Guoyu Lin and Weigong Zhang

This paper aims to gain the real-time terrain parameters of the battlefield for the evaluation of military vehicle trafficability. In military missions, improvements in vehicle…

Abstract

Purpose

This paper aims to gain the real-time terrain parameters of the battlefield for the evaluation of military vehicle trafficability. In military missions, improvements in vehicle mobility have the potential to greatly increase the military operational capacity, in which vehicle trafficability plays a significant role.

Design/methodology/approach

In this framework, an online terrain parameter estimation method based on the Gauss-Newton algorithm is proposed to estimate the primary terrain mechanical parameters. Good estimation results are indicated, unless the initial values involved are properly selected. Correspondingly, a method of terrain classification is then presented to contribute to the selection of the initial values. This method uses the wavelet packet transform technique for feature extraction and adopts the support vector machine algorithm for terrain classification. Once the terrain type is identified, advices can be given on the initial value selection referring to the empirical terrain parameters.

Findings

On the basis of a dynamic testing system suitable for real military vehicles, the proposed algorithms are validated. High estimation accuracy of the terrain parameters is indicated on sandy loam, and good classification performance is demonstrated on four tested terrains.

Originality/value

The presented algorithm outperforms the existing methods, which not only realizes the online terrain parameter estimation but also develops the estimation accuracy. Moreover, its effectiveness is confirmed by real vehicle tests in practice.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 May 2021

Sachin Negi, Shiru Sharma and Neeraj Sharma

The purpose of this paper is to present gait analysis for five different terrains: level ground, ramp ascent, ramp descent, stair ascent and stair descent.

Abstract

Purpose

The purpose of this paper is to present gait analysis for five different terrains: level ground, ramp ascent, ramp descent, stair ascent and stair descent.

Design/methodology/approach

Gait analysis has been carried out using a combination of the following sensors: force-sensitive resistor (FSR) sensors fabricated in foot insole to sense foot pressure, a gyroscopic sensor to detect the angular velocity of the shank and MyoWare electromyographic muscle sensors to detect muscle’s activities. All these sensors were integrated around the Arduino nano controller board for signal acquisition and conditioning purposes. In the present scheme, the muscle activities were obtained from the tibialis anterior and medial gastrocnemius muscles using electromyography (EMG) electrodes, and the acquired EMG signals were correlated with the simultaneously attained signals from the FSR and gyroscope sensors. The nRF24L01+ transceivers were used to transfer the acquired data wirelessly to the computer for further analysis. For the acquisition of sensor data, a Python-based graphical user interface has been designed to analyze and display the processed data. In the present paper, the authors got motivated to design and develop a reliable real-time gait phase detection technique that can be used later in designing a control scheme for the powered ankle-foot prosthesis.

Findings

The effectiveness of the gait phase detection was obtained in an open environment. Both off-line and real-time gait events and gait phase detections were accomplished for the FSR and gyroscopic sensors. Both sensors showed their usefulness for detecting the gait events in real-time, i.e. within 10 ms. The heuristic rules and a zero-crossing based-algorithm for the shank angular rate correctly identified all the gait events for the locomotion in all five terrains.

Practical implications

This study leads to an understanding of human gait analysis for different types of terrains. A real-time standalone system has been designed and realized, which may find application in the design and development of ankle-foot prosthesis having real-time control feature for the above five terrains.

Originality/value

The noise-free data from three sensors were collected in the same time frame from both legs using a wireless sensor network between two transmitters and a single receiver. Unlike the data collection using a treadmill in a laboratory environment, this setup is useful for gait analysis in an open environment for different terrains.

Article
Publication date: 17 March 2014

Giulio Reina, Mauro Bellone, Luigi Spedicato and Nicola Ivan Giannoccaro

This research aims to address the issue of safe navigation for autonomous vehicles in highly challenging outdoor environments. Indeed, robust navigation of autonomous mobile…

Abstract

Purpose

This research aims to address the issue of safe navigation for autonomous vehicles in highly challenging outdoor environments. Indeed, robust navigation of autonomous mobile robots over long distances requires advanced perception means for terrain traversability assessment.

Design/methodology/approach

The use of visual systems may represent an efficient solution. This paper discusses recent findings in terrain traversability analysis from RGB-D images. In this context, the concept of point as described only by its Cartesian coordinates is reinterpreted in terms of local description. As a result, a novel descriptor for inferring the traversability of a terrain through its 3D representation, referred to as the unevenness point descriptor (UPD), is conceived. This descriptor features robustness and simplicity.

Findings

The UPD-based algorithm shows robust terrain perception capabilities in both indoor and outdoor environment. The algorithm is able to detect obstacles and terrain irregularities. The system performance is validated in field experiments in both indoor and outdoor environments.

Research limitations/implications

The UPD enhances the interpretation of 3D scene to improve the ambient awareness of unmanned vehicles. The larger implications of this method reside in its applicability for path planning purposes.

Originality/value

This paper describes a visual algorithm for traversability assessment based on normal vectors analysis. The algorithm is simple and efficient providing fast real-time implementation, since the UPD does not require any data processing or previously generated digital elevation map to classify the scene. Moreover, it defines a local descriptor, which can be of general value for segmentation purposes of 3D point clouds and allows the underlining geometric pattern associated with each single 3D point to be fully captured and difficult scenarios to be correctly handled.

Details

Sensor Review, vol. 34 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 November 2020

Anton Saveliev, Egor Aksamentov and Evgenii Karasev

The purpose of this paper is to analyze the development of a novel approach for automated terrain mapping a robotic vehicles path tracing.

Abstract

Purpose

The purpose of this paper is to analyze the development of a novel approach for automated terrain mapping a robotic vehicles path tracing.

Design/methodology/approach

The approach includes stitching of images, obtained from unmanned aerial vehicle, based on ORB descriptors, into an orthomosaic image and the GPS-coordinates are binded to the corresponding pixels of the map. The obtained image is fed to a neural network MASK R-CNN for detection and classification regions, which are potentially dangerous for robotic vehicles motion. To visualize the obtained map and obstacles on it, the authors propose their own application architecture. Users can any time edit the present areas or add new ones, which are not intended for robotic vehicles traffic. Then the GPS-coordinates of these areas are passed to robotic vehicles and the optimal route is traced based on this data

Findings

The developed approach allows revealing impassable regions on terrain map and associating them with GPS-coordinates, whereas these regions can be edited by the user.

Practical implications

The total duration of the algorithm, including the step with Mask R-CNN network on the same dataset of 120 items was 7.5 s.

Originality/value

Creating an orthophotomap from 120 images with image resolution of 470 × 425 px requires less than 6 s on a laptop with moderate computing power, what justifies using such algorithms in the field without any powerful and expensive hardware.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 2/3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 18 April 2016

Satish Kumar Reddy and Prabir K. Pal

– The purpose of this paper is to detect traversable regions surrounding a mobile robot by computing terrain unevenness using the range data obtained from a single 3D scan.

267

Abstract

Purpose

The purpose of this paper is to detect traversable regions surrounding a mobile robot by computing terrain unevenness using the range data obtained from a single 3D scan.

Design/methodology/approach

The geometry of acquiring range data from a 3D scan is exploited to probe the terrain and extract traversable regions. Nature of terrain under each scan point is quantified in terms of an unevenness value, which is computed from the difference in range of scan point with respect to its neighbours. Both radial and transverse unevenness values are computed and compared with threshold values at every point to determine if the point belongs to a traversable region or an obstacle. A region growing algorithm spreads like a wavefront to join all traversable points into a traversable region.

Findings

This simple method clearly distinguishes ground and obstacle points. The method works well even in presence of terrain slopes or when the robot experiences pitch and roll.

Research limitations/implications

The method applies on single 3D scans and not on aggregated point cloud in general.

Practical implications

The method has been tested on a mobile robot in outdoor environment in our research centre.

Social implications

This method, along with advanced navigation schemes, can reduce human intervention in many mobile robot applications including unmanned ground vehicles.

Originality/value

Range difference between scan points has been used earlier for obstacle detection, but no methodology has been developed around this concept. The authors propose a concrete method based on computation of radial and transverse unevenness at every point and detecting obstacle edges using range-dependent threshold values.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 4 December 2019

Fei Guo, Shoukun Wang, Junzheng Wang and Huan Yu

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse…

Abstract

Purpose

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse rough three-dimensional (3-D) terrain.

Design/methodology/approach

Presented is a novel wheel-quadruped mobile robot with parallel driving mechanisms and based on the Stewart six degrees of freedom (6-DOF) platform. The task for traversing rough terrain is decomposed into two prospects: one is the configuration selection in terms of a local foothold cost map, in which the kinematic feasibility of parallel mechanism and terrain features are satisfied in heuristic search planning, and the other one is a whole-body controller to complete smooth and continuous motion transitions.

Findings

A fan-shaped foot search region focuses on footholds with a strong possibility of becoming foot placement, simplifying computation complexity. A receding horizon avoids kinematic deadlock during the search process and improves robot adaptation.

Research limitations/implications

Both simulation and experimental results validated the proposed scenario available and appropriate for quadruped locomotion to traverse challenging 3-D terrains.

Originality/value

This paper analyzes kinematic workspace for a parallel robot with 6-DOF Stewart mechanism on both body and foot. A fan-shaped foot search region enhances computation efficiency. Receding horizon broadens the preview search to decrease the possibility of deadlock minima resulting from terrain variation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 June 2021

Zhu Hongbiao, Yueming Liu, Weidong Wang and Zhijiang Du

This paper aims to present a new method to analyze the robot’s obstacle negotiation based on the terramechanics, where the terrain physical parameters, the sinkage and the…

Abstract

Purpose

This paper aims to present a new method to analyze the robot’s obstacle negotiation based on the terramechanics, where the terrain physical parameters, the sinkage and the slippage of the robot are taken into account, to enhance the robot’s trafficability.

Design/methodology/approach

In this paper, terramechanics is used in motion planning for all-terrain obstacle negotiation. First, wheel/track-terrain interaction models are established and used to analyze traction performances in different locomotion modes of the reconfigurable robot. Next, several key steps of obstacle-climbing are reanalyzed and the sinkage, the slippage and the drawbar pull are obtained by the models in these steps. In addition, an obstacle negotiation analysis method on loose soil is proposed. Finally, experiments in different locomotion modes are conducted and the results demonstrate that the model is more suitable for practical applications than the center of gravity (CoG) kinematic model.

Findings

Using the traction performance experimental platform, the relationships between the drawbar pull and the slippage in different locomotion modes are obtained, and then the traction performances are obtained. The experimental results show that the relationships obtained by the models are in good agreement with the measured. The obstacle-climbing experiments are carried out to confirm the availability of the method, and the experimental results demonstrate that the model is more suitable for practical applications than the CoG kinematic model.

Originality/value

Comparing with the results without considering Terramechanics, obstacle-negotiation analysis based on the proposed track-terrain interaction model considering Terramechanics is much more accurate than without considering Terramechanics.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 April 2013

Dominik Belter and Piotr Skrzypczynski

The purpose of this paper is to describe a novel application of the recently introduced concept from computer vision to self‐localization of a walking robot in unstructured…

Abstract

Purpose

The purpose of this paper is to describe a novel application of the recently introduced concept from computer vision to self‐localization of a walking robot in unstructured environments. The technique described in this paper enables a walking robot with a monocular vision system (single camera) to obtain precise estimates of its pose with regard to the six degrees of freedom. This capability is essential in search and rescue missions in collapsed buildings, polluted industrial plants, etc.

Design/methodology/approach

The Parallel Tracking and Mapping (PTAM) algorithm and the Inertial Measurement Unit (IMU) are used to determine the 6‐d.o.f. pose of a walking robot. Bundle‐adjustment‐based tracking and structure reconstruction are applied to obtain precise camera poses from the monocular vision data. The inclination of the robot's platform is determined by using IMU. The self‐localization system is used together with the RRT‐based motion planner, which allows to walk autonomously on rough, previously unknown terrain. The presented system operates on‐line on the real hexapod robot. Efficiency and precision of the proposed solution are demonstrated by experimental data.

Findings

The PTAM‐based self‐localization system enables the robot to walk autonomously on rough terrain. The software operates on‐line and can be implemented on the robot's on‐board PC. Results of the experiments show that the position error is small enough to allow robust elevation mapping using the laser scanner. In spite of the unavoidable feet slippages, the walking robot which uses PTAM for self‐localization can precisely estimate its position and successfully recover from motion execution errors.

Research limitations/implications

So far the presented self‐localization system was tested in limited‐scale indoor experiments. Experiments with more realistic outdoor scenarios are scheduled as further work.

Practical implications

Precise self‐localization may be one of the most important factors enabling the use of walking robots in practical USAR missions. The results of research on precise self‐localization in 6‐d.o.f. may be also useful for autonomous robots in other application areas: construction, agriculture, military.

Originality/value

The vision‐based self‐localization algorithm used in the presented research is not new, but the contribution lies in its implementation/integration on a walking robot, and experimental evaluation in the demanding problem of precise self‐localization in rough terrain.

Details

Industrial Robot: An International Journal, vol. 40 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 27 March 2007

Barry A. Macy, Gerard F. Farias, Jean-Francois Rosa and Curt Moore

This chapter reports on a longitudinal quasi-experimental field study within an organizational design of a global consumer products manufacturer moving toward high-performance…

Abstract

This chapter reports on a longitudinal quasi-experimental field study within an organizational design of a global consumer products manufacturer moving toward high-performance work systems (HPWSs) in North America by integrating business centers and self-directed work teams (SDWTs) coupled with 13 other action-levers within an integrated and bundled high-performance organizations (HPOs) re-design. The results of this organizational design effort are assessed using different types and levels of organizational outcomes (hard record data, behavioral, and attitudinal measures) along a 5-year temporal dimension punctuated by multiple time periods (baseline, during, and after). The organization, which was “built to change” (Lawler & Worley, 2006), in this research had already highly superior or “exemplar” (Collins, 2001) levels of organizational performance. Consequently, the real research question becomes: “What effect does state of the art organizational design and development have on an exemplar organization?” The study also calls into question the field's ability to truly assess exemplar organizations with existing measures of organizational change and development.

Details

Research in Organizational Change and Development
Type: Book
ISBN: 978-1-84950-425-6

Content available
Article
Publication date: 10 December 2021

Jade F. Preston, Bruce A. Cox, Paul P. Rebeiz and Timothy W. Breitbach

Supply chains need to balance competing objectives; in addition to efficiency, supply chains need to be resilient to adversarial and environmental interference and robust to…

Abstract

Purpose

Supply chains need to balance competing objectives; in addition to efficiency, supply chains need to be resilient to adversarial and environmental interference and robust to uncertainties in long-term demand. Significant research has been conducted designing efficient supply chains and recent research has focused on resilient supply chain design. However, the integration of resilient and robust supply chain design is less well studied. The purpose of the paper is to include resilience and robustness into supply chain design.

Design/methodology/approach

The paper develops a method to include resilience and robustness into supply chain design. Using the region of West Africa, which is plagued with persisting logistical issues, the authors develop a regional risk assessment framework and then apply categorical risk to the countries of West Africa using publicly available data. A scenario reduction technique is used to focus on the highest risk scenarios for the model to be tractable. Next, the authors develop a mathematical model leveraging this framework to design a resilient supply network that minimizes cost while ensuring the network functions following a disruption. Finally, the authors examine the network's robustness to demand uncertainty via several plausible emergency scenarios.

Findings

The authors provide optimal sets of transshipment hubs with varying counts from 5 through 15 hubs. The authors determine there is no feasible solution that uses only five transshipment hubs. The authors' findings reinforce those seven transshipment hubs – the solution currently employed in West Africa – is the cheapest architecture to achieve resilience and robustness. Additionally, for each set of feasibility transshipment hubs, the authors provide connections between hubs and demand spokes.

Originality/value

While, at the time of this research, three other manuscripts incorporated both resilience and robustness of the authors' research unique solved the problem as a network flow instead of as a set covering problem. Additionally, the authors establish a novel risk framework to guide the required amount of redundancy, and finally the out research proposes a scenario reduction heuristic to allow tractable exploration of 512 possible demand scenarios.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

1 – 10 of over 1000