Search results

1 – 10 of 26
Open Access
Article
Publication date: 24 May 2024

Long Li, Binyang Chen and Jiangli Yu

The selection of sensitive temperature measurement points is the premise of thermal error modeling and compensation. However, most of the sensitive temperature measurement point…

Abstract

Purpose

The selection of sensitive temperature measurement points is the premise of thermal error modeling and compensation. However, most of the sensitive temperature measurement point selection methods do not consider the influence of the variability of thermal sensitive points on thermal error modeling and compensation. This paper considers the variability of thermal sensitive points, and aims to propose a sensitive temperature measurement point selection method and thermal error modeling method that can reduce the influence of thermal sensitive point variability.

Design/methodology/approach

Taking the truss robot as the experimental object, the finite element method is used to construct the simulation model of the truss robot, and the temperature measurement point layout scheme is designed based on the simulation model to collect the temperature and thermal error data. After the clustering of the temperature measurement point data is completed, the improved attention mechanism is used to extract the temperature data of the key time steps of the temperature measurement points in each category for thermal error modeling.

Findings

By comparing with the thermal error modeling method of the conventional fixed sensitive temperature measurement points, it is proved that the method proposed in this paper is more flexible in the processing of sensitive temperature measurement points and more stable in prediction accuracy.

Originality/value

The Grey Attention-Long Short Term Memory (GA-LSTM) thermal error prediction model proposed in this paper can reduce the influence of the variability of thermal sensitive points on the accuracy of thermal error modeling in long-term processing, and improve the accuracy of thermal error prediction model, which has certain application value. It has guiding significance for thermal error compensation prediction.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 September 2024

Yewei Ouyang, Guoqing Huang and Shiyi He

There are many safety hazards in construction workplaces, and inattention to the hazards is the main reason why construction workers failed to identify the hazards. Reasonably…

Abstract

Purpose

There are many safety hazards in construction workplaces, and inattention to the hazards is the main reason why construction workers failed to identify the hazards. Reasonably allocating attention during hazard identification is critical for construction workers’ safety. However, adverse working environments in job sites may undermine workers’ attention. Previous studies failed to investigate the impacts of environmental factors on attention allocation, which hinders taking appropriate measures to eliminate safety incidents when encountering adverse working environments. This study aims to examine the effects of workplace noise and heat exposure on workers’ attention allocation during construction hazard identification to fill the research gap.

Design/methodology/approach

This study applied an experimental study where a within-subject experiment was designed. Fifteen construction workers were invited to perform hazard identification tasks in panoramic virtual reality. They were exposed to three noise levels (60, 85 and 100 dBA) in four thermal conditions (26°C, 50% RH; 33°C, 50% RH; 30°C, 70% RH; 33°C, 70% RH). Their eye movements were recorded to indicate their attention allocation under each condition.

Findings

The results show that noise exposure reduced workers’ attention to hazardous areas and the impacts increased with the noise level. Heat exposure also reduced the attention, but it did not increase with the heat stress but with subjects’ thermal discomfort. The attention was impacted more by noise than heat exposure. Noise exposure in the hot climate should be more noteworthy because lower levels of noise would lead to significant changes. These visual characteristics led to poorer identification accuracy.

Originality/value

This study could extend the understanding of the relationship between adverse environmental factors and construction safety. Understanding the intrinsic reasons for workers' failed identification may also provide insights for the industry to enhance construction safety under adverse environments.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 30 September 2024

Yuyuan Wu and Saloomeh Tabari

Background music is considered an intangible element but has a close attachment to emotional reaction and memory. Background music is constantly present in our everyday lives…

Abstract

Background music is considered an intangible element but has a close attachment to emotional reaction and memory. Background music is constantly present in our everyday lives, whether for distraction, recreation or mood enhancement. It can be heard in the supermarket, in lifts, cafés or hotels. Music has been identified as important in the construction of autobiographical memories and emotions of individuals. Many premises use music to enhance customers' emotions, and hoteliers try to use music in their lobby to increase the likelihood of customer experience. The purpose of this chapter is to examine the impact of background music as an intangible element in hotel lobbies on customer satisfaction. More specifically, this study aims to draw a connection between the musical variables (musicscape) in hotel lobbies with regard to the gender and age of guests and how hotel businesses can make use of this intangible element to enhance their guest's satisfaction. Sound marketing is an overlooked area in hospitality and tourism research. A mixed-method approach has been employed in this study, including a questionnaire and online interviews. The result shows that background music in hotel lobbies has a significant impact on customer satisfaction and the time they are willing to spend in the lobby. Moreover, different musical variables have obvious influences on the experience of guests of different ages and genders. The results of this study provide theoretical and managerial recommendations on the importance of sound marketing in a hotel lobby setting.

Details

Marketing and Design in the Service Sector
Type: Book
ISBN: 978-1-83797-276-0

Keywords

Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1307

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 17 September 2024

Jiao Ge, Jiaqi Zhang, Daheng Chen and Tiesheng Dong

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape…

Abstract

Purpose

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape memory alloy to design variable stiffness elements. Meanwhile, the purpose of this paper is also to solve the problem of not being able to install sensors on shape memory alloy due to volume limitations.

Design/methodology/approach

This paper introduces the design, modeling and control process for a variable stiffness passive ankle exoskeleton, adjusting joint stiffness using shape memory alloy (SMA). This innovative exoskeleton aids the human ankle by adapting the precompression of elastic components by SMA, thereby adjusting the ankle exoskeleton’s integral stiffness. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Findings

Using SMA as the driving force for stiffness modification in passive exoskeletons introduces several distinct advantages, inclusive of high energy density, programmability, rapid response time and simplified structural design. In the course of experimental validation, this ankle exoskeleton, endowed with variable stiffness, proficiently executed actions like squatting and walking and it can effectively increase the joint stiffness by 0.2 Nm/Deg.

Originality/value

The contribution of this paper is to introduce SMA to adjust the stiffness to actively calibrate power density to match the application requirements. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Book part
Publication date: 18 September 2024

Xuan-Hoa Nghiem, Huong Trang Pham, Thu Giang Nguyen and Thi Kim Duyen Nguyen

Climate change has been universally recognized as a major threat to human well-being, necessitating a comprehensive transformation of people's activities. Various measures have…

Abstract

Climate change has been universally recognized as a major threat to human well-being, necessitating a comprehensive transformation of people's activities. Various measures have been proposed to contain climate change among which the green transformation grabs special attention, thanks to its desirable properties. Within the green transformation process, green tourism comes to prominence with huge potential. As one of the largest carbon emitters, the transition towards green tourism may offer substantial benefits not only for tourism companies but also for the whole economy. Yet, most studies tend to focus on the adverse effects of tourism on climate change while overlooking the potential impact of climate change on tourism. This chapter clarifies the feedback relationship between climate change and tourism and makes some recommendations.

Details

The Emerald Handbook of Tourism Economics and Sustainable Development
Type: Book
ISBN: 978-1-83753-709-9

Keywords

Article
Publication date: 13 September 2024

Ahmad Honarjoo, Ehsan Darvishan, Hassan Rezazadeh and Amir Homayoon Kosarieh

This article introduces SigBERT, a novel approach that fine-tunes bidirectional encoder representations from transformers (BERT) for the purpose of distinguishing between intact…

Abstract

Purpose

This article introduces SigBERT, a novel approach that fine-tunes bidirectional encoder representations from transformers (BERT) for the purpose of distinguishing between intact and impaired structures by analyzing vibration signals. Structural health monitoring (SHM) systems are crucial for identifying and locating damage in civil engineering structures. The proposed method aims to improve upon existing methods in terms of cost-effectiveness, accuracy and operational reliability.

Design/methodology/approach

SigBERT employs a fine-tuning process on the BERT model, leveraging its capabilities to effectively analyze time-series data from vibration signals to detect structural damage. This study compares SigBERT's performance with baseline models to demonstrate its superior accuracy and efficiency.

Findings

The experimental results, obtained through the Qatar University grandstand simulator, show that SigBERT outperforms existing models in terms of damage detection accuracy. The method is capable of handling environmental fluctuations and offers high reliability for non-destructive monitoring of structural health. The study mentions the quantifiable results of the study, such as achieving a 99% accuracy rate and an F-1 score of 0.99, to underline the effectiveness of the proposed model.

Originality/value

SigBERT presents a significant advancement in SHM by integrating deep learning with a robust transformer model. The method offers improved performance in both computational efficiency and diagnostic accuracy, making it suitable for real-world operational environments.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1398

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 26