Search results

1 – 10 of 188
Article
Publication date: 21 August 2017

Weibang Bai, Qixin Cao, Pengfei Wang, Peng Chen, Chuntao Leng and Tiewen Pan

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development…

Abstract

Purpose

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development process with a steep price. This paper aims to propose and realize a new, efficient and convenient strategy for building effective control systems for surgical and even other complex robotic systems.

Design/methodology/approach

A novel method that takes advantage of the modularization concept by integrating two middleware technologies (robot operating system and robotic technology middleware) into a common architecture based on the strengths of both was designed and developed.

Findings

Tests of the developed control system showed very low time-delay between the master and slave sides; good movement representation on the slave manipulator; and high positional and operational accuracy. Moreover, the new development strategy trial came with much higher efficiency and lower costs.

Research limitations/implications

This method results in a modularized and distributed control system that is amenable to collaboratively develop; convenient to modify and update; componentized and easy to extend; mutually independent among subsystems; and practicable to be running and communicating across multiple operating systems. However, experiments show that surgical training and updates of the robotic system are still required to achieve better proficiency for completing complex minimally invasive surgical operations with the proposed and developed system.

Originality/value

This research proposed and developed a novel modularization design method and a novel architecture for building a distributed teleoperation control system for laparoscopic MIS.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 March 2017

Bin Fang, Fuchun Sun, Huaping Liu and Di Guo

The purpose of this paper is to present a novel data glove which can capture the motion of the arm and hand by inertial and magnetic sensors. The proposed data glove is used to…

Abstract

Purpose

The purpose of this paper is to present a novel data glove which can capture the motion of the arm and hand by inertial and magnetic sensors. The proposed data glove is used to provide the information of the gestures and teleoperate the robotic arm-hand.

Design/methodology/approach

The data glove comprises 18 low-cost inertial and magnetic measurement units (IMMUs) which not only make up the drawbacks of traditional data glove that only captures the incomplete gesture information but also provide a novel scheme of the robotic arm-hand teleoperation. The IMMUs are compact and small enough to wear on the upper arm, forearm, palm and fingers. The calibration method is proposed to improve the accuracy of measurements of units, and the orientations of each IMMU are estimated by a two-step optimal filter. The kinematic models of the arm, hand and fingers are integrated into the entire system to capture the motion gesture. A positon algorithm is also deduced to compute the positions of fingertips. With the proposed data glove, the robotic arm-hand can be teleoperated by the human arm, palm and fingers, thus establishing a novel robotic arm-hand teleoperation scheme.

Findings

Experimental results show that the proposed data glove can accurately and fully capture the fine gesture. Using the proposed data glove as the multiple input device has also proved to be a suitable teleoperating robotic arm-hand system.

Originality/value

Integrated with 18 low-cost and miniature IMMUs, the proposed data glove can give more information of the gesture than existing devices. Meanwhile, the proposed algorithms for motion capture determine the superior results. Furthermore, the accurately captured gestures can efficiently facilitate a novel teleoperation scheme to teleoperate the robotic arm-hand.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2004

A.M. Okamura

Teleoperated minimally invasive surgical robots can significantly enhance a surgeon's accuracy, dexterity and visualization. However, current commercially available systems do not…

10150

Abstract

Teleoperated minimally invasive surgical robots can significantly enhance a surgeon's accuracy, dexterity and visualization. However, current commercially available systems do not include significant haptic (force and tactile) feedback to the operator. This paper describes experiments to characterize this problem, as well as several methods to provide haptic feedback in order to improve surgeon's performance. There exist a variety of sensing and control methods that enable haptic feedback, although a number of practical considerations, e.g. cost, complexity and biocompatibility, present significant challenges. The ability of teleoperated robot‐assisted surgical systems to measure and display haptic information leads to a number of additional exciting clinical and scientific opportunities, such as active operator assistance through “virtual fixtures” and the automatic acquisition of tissue properties.

Details

Industrial Robot: An International Journal, vol. 31 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 February 2023

Ahmed Eslam Salman and Magdy Raouf Roman

The study proposed a human–robot interaction (HRI) framework to enable operators to communicate remotely with robots in a simple and intuitive way. The study focused on the…

Abstract

Purpose

The study proposed a human–robot interaction (HRI) framework to enable operators to communicate remotely with robots in a simple and intuitive way. The study focused on the situation when operators with no programming skills have to accomplish teleoperated tasks dealing with randomly localized different-sized objects in an unstructured environment. The purpose of this study is to reduce stress on operators, increase accuracy and reduce the time of task accomplishment. The special application of the proposed system is in the radioactive isotope production factories. The following approach combined the reactivity of the operator’s direct control with the powerful tools of vision-based object classification and localization.

Design/methodology/approach

Perceptive real-time gesture control predicated on a Kinect sensor is formulated by information fusion between human intuitiveness and an augmented reality-based vision algorithm. Objects are localized using a developed feature-based vision algorithm, where the homography is estimated and Perspective-n-Point problem is solved. The 3D object position and orientation are stored in the robot end-effector memory for the last mission adjusting and waiting for a gesture control signal to autonomously pick/place an object. Object classification process is done using a one-shot Siamese neural network (NN) to train a proposed deep NN; other well-known models are also used in a comparison. The system was contextualized in one of the nuclear industry applications: radioactive isotope production and its validation were performed through a user study where 10 participants of different backgrounds are involved.

Findings

The system was contextualized in one of the nuclear industry applications: radioactive isotope production and its validation were performed through a user study where 10 participants of different backgrounds are involved. The results revealed the effectiveness of the proposed teleoperation system and demonstrate its potential for use by robotics non-experienced users to effectively accomplish remote robot tasks.

Social implications

The proposed system reduces risk and increases level of safety when applied in hazardous environment such as the nuclear one.

Originality/value

The contribution and uniqueness of the presented study are represented in the development of a well-integrated HRI system that can tackle the four aforementioned circumstances in an effective and user-friendly way. High operator–robot reactivity is kept by using the direct control method, while a lot of cognitive stress is removed using elective/flapped autonomous mode to manipulate randomly localized different configuration objects. This necessitates building an effective deep learning algorithm (in comparison to well-known methods) to recognize objects in different conditions: illumination levels, shadows and different postures.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 September 2002

Carl T. Haas and Young‐Suk Kim

Infrastructure construction has experienced significant recent advances in automation. Such advances will only accelerate in the future. They are founded on enabling technologies…

1128

Abstract

Infrastructure construction has experienced significant recent advances in automation. Such advances will only accelerate in the future. They are founded on enabling technologies such as positioning systems, advanced control methods, and graphical interfaces. This paper begins by describing the relevance of these enabling technologies to automation in infrastructure construction. It then focuses on classes of applications, including earth moving, compaction, road construction and maintenance, and trenchless technology. Because of the less regulated, relatively repetitive, and well‐financed nature of such work, it is likely to experience quicker progress than other application domains.

Details

Construction Innovation, vol. 2 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 29 September 2023

Ata Jahangir Moshayedi, Nafiz Md Imtiaz Uddin, Xiaohong Zhang and Mehran Emadi Andani

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life…

Abstract

Purpose

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life of AD patients.

Design/methodology/approach

The present discourse endeavors to provide a comprehensive overview of extant scholarly inquiries that have examined the salience of inhibitory mechanisms vis-à-vis robotic interventions and their impact on patients with AD. Specifically, this review aims to explicate the contemporary state of affairs in this realm by furnishing a detailed explication of ongoing research endeavors. With the objective of elucidating the significance of inhibitory processes in robotic therapies for individuals with AD, this analysis offers a critical appraisal of extant literature that probes the intersection of cognitive mechanisms and assistive technologies. Through a meticulous analysis of diverse scholarly contributions, this review advances a nuanced understanding of the intricate interplay between inhibitory processes and robotic interventions in the context of AD.

Findings

According to the review papers, it appears that implementing robot-assisted rehabilitation can serve as a pragmatic and effective solution for enhancing the well-being and overall quality of life of patients and families engaged with AD. Besides, this new feature in the robotic area is anticipated to have a critical role in the success of this innovative approach.

Research limitations/implications

Due to the nascent nature of this cutting-edge technology and the constrained configuration of the mechanized entity in question, further protracted analysis is imperative to ascertain the advantages and drawbacks of robotic rehabilitation vis-à-vis individuals afflicted with Alzheimer’s ailment.

Social implications

The potential for robots to serve as indispensable assets in the provision of care for individuals afflicted with AD is significant; however, their efficacy and appropriateness for utilization by caregivers of AD patients must be subjected to further rigorous scrutiny.

Originality/value

This paper reviews the current robotic method and compares the current state of the art for the AD patient.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 September 2006

José M. Sabater, Roque J. Saltarén, Rafael Aracil, Eugenio Yime and José M. Azorín

The aim of this paper is to present new robotic structures that can be suitable for inspection, maintenance and dismantling tasks in nuclear facilities.

Abstract

Purpose

The aim of this paper is to present new robotic structures that can be suitable for inspection, maintenance and dismantling tasks in nuclear facilities.

Design/methodology/approach

In the first part, two types of parallel robots capable to climb through structures are presented. The kinematics of the proposed platforms is reviewed, with emphasis on the analysis of the singularities. Next section shows the control architecture and the hardware setup of the developed system. Finally, the prototypes developed are showed and some conclusions are obtained.

Findings

The slave robot is a parallel structure with the ability to climb over structures and with a very high load capacity. The master device is a parallel device with special characteristics that makes easier the teleoperation of the parallel slave robot.

Originality/value

The paper presents a teleoperation system based on parallel platform with 6 degrees of freedom to overcome the classical difficulties of teleoperation in nuclear facilities.

Details

Industrial Robot: An International Journal, vol. 33 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 July 2019

Xinbo Yu, Shuang Zhang, Liang Sun, Yu Wang, Chengqian Xue and Bin Li

This paper aims to propose cooperative control strategies for dual-arm robots in different human–robot collaborative tasks in assembly processes. The authors set three different…

Abstract

Purpose

This paper aims to propose cooperative control strategies for dual-arm robots in different human–robot collaborative tasks in assembly processes. The authors set three different regions where robot performs different collaborative ways: “teleoperate” region, “co-carry” region and “assembly” region. Human holds the “master” arm of dual-arm robot to operate the other “follower” arm by our proposed controller in “teleoperation” region. Limited by the human arm length, “follower” arm is teleoperated by human to carry the distant object. In the “co-carry” region, “master” arm and “follower” arm cooperatively carry the object to the region close to the human. In “assembly” region, “follower” arm is used for fixing the object and “master” arm coupled with human is used for assembly.

Design/methodology/approach

A human moving target estimated method is proposed for decreasing efforts for human to move “master” arm, radial basis functions neural networks are used to compensate for uncertainties in dynamics of both arms. Force feedback is designed in “master” arm controller for human to perceive the movement of “follower” arm. Experimental results on Baxter robot platform show the effectiveness of this proposed method.

Findings

Experimental results on Baxter robot platform show the effectiveness of our proposed methods. Different human-robot collaborative tasks in assembly processes are performed successfully under our cooperative control strategies for dual-arm robots.

Originality/value

In this paper, cooperative control strategies for dual-arm robots have been proposed in different human–robot collaborative tasks in assembly processes. Three different regions where robot performs different collaborative ways are set: “teleoperation” region, “co-carry” region and “assembly” region.

Article
Publication date: 1 December 1997

Keith Antonelli and Guy Immega

From elephant trunks to octopus legs and human tongues, nature abounds with tentacles that are adept at manipulation. Kinetic Sciences Inc. has developed a robotic tentacle that…

Abstract

From elephant trunks to octopus legs and human tongues, nature abounds with tentacles that are adept at manipulation. Kinetic Sciences Inc. has developed a robotic tentacle that moves like an organic tentacle and extends and contracts with independently controlled bending and compliance in two or more regions. Remote tendon‐driven actuation keeps actuator mass away from the manipulator for impressive strength‐to‐weight performance. Customizable in length and diameter, and optionally available with wrist‐rotate, gripper, and computer control, the KSI Tentacletm has broad potential for a variety of teleoperated or automated applications including vacuuming, spray washing, general materials handling, agricultural harvesting, robotic refuelling, inspection, and endoscopy. The KSI Tentacletm manipulator is suited to low‐cost mass‐production, and thus can be considered a “disposable robot”.

Details

Industrial Robot: An International Journal, vol. 24 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 September 2007

Christine Connolly

This paper sets out to describe hardware and software developments in robotic cameras for wildlife observation.

2351

Abstract

Purpose

This paper sets out to describe hardware and software developments in robotic cameras for wildlife observation.

Design/methodology/approach

The role of automatic equipment in wildlife observation is introduced, and examples of suitable cameras are given. There follows a description of an intensive search for a bird previously thought extinct, and an intelligent robotic video system specially developed to assist. Finally, a general robotic observatory is described which combines teleoperation and autonomy.

Findings

Biology field work is very labour‐intensive, but is becoming increasingly high‐tech. Sensors and intelligent specialist software are helping biologists by improving the selectivity of images captured and stored, and the responsiveness of remote systems to their live imaging needs. Automated and teleoperated equipment greatly increases observation potential whilst avoiding the disturbance of human presence.

Originality/value

The paper highlights the valuable contribution of teleoperation and automation in an unusual area. It is of interest to engineers and naturalists.

Details

Sensor Review, vol. 27 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 188