Search results

1 – 10 of 88
Article
Publication date: 10 May 2022

Priyaranjan Biswal and Prases Kumar Mohanty

Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to…

Abstract

Purpose

Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to present details about the mechanical formation and a new conceptual elliptical trajectory generation discussed throughout the paper of the quadruped robot.

Design/methodology/approach

Initially, a realistic CAD model of the four-legged robot is developed in Solidwork-2019. The proposed model’s forward and inverse kinematics equations are deduced using Denavit–Hartenberg parameters. Based on geometry and kinematics, manipulability and obstacle avoidance are investigated. A method of galloping trajectory is proposed for aiming the increase of upright direction impulse, which is produced by ground reaction force at each step frequency. Furthermore, the locomotion equation of the ellipse trajectory is derived by setting transition angle polynomial of free-fall phase, stance phase and swing phase and the constraints.

Findings

Finally, a successive simulation on a 2D sagittal plane is performed to check and verify the usefulness of the proposed trajectory. Before the development of the full quadruped, a single prototype leg is generated for experimental verification of the dynamic simulations.

Originality/value

The proposed trajectory is novel in that it uses force tracking control, which is intended to improve the quadruped robot’s robustness and stability.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 January 2024

Premaratne Samaranayake, Michael W. McLean and Samanthi Kumari Weerabahu

The application of lean and quality improvement methods is very common in process improvement projects at organisational levels. The purpose of this research is to assess the…

Abstract

Purpose

The application of lean and quality improvement methods is very common in process improvement projects at organisational levels. The purpose of this research is to assess the adoption of Lean Six Sigma™ approaches for addressing a complex process-related issue in the coal industry.

Design/methodology/approach

The sticky coal problem was investigated from the perspective of process-related issues. Issues were addressed using a blended Lean value stream of supply chain interfaces and waste minimisation through the Six Sigma™ DMAIC problem-solving approach, taking into consideration cross-organisational processes.

Findings

It was found that the tendency to “solve the problem” at the receiving location without communication to the upstream was, and is still, a common practice that led to the main problem of downstream issues. The application of DMAIC Six Sigma™ helped to address the broader problem. The overall operations were improved significantly, showing the reduction of sticky coal/wagon hang-up in the downstream coal handling terminal.

Research limitations/implications

The Lean Six Sigma approaches were adopted using DMAIC across cross-organisational supply chain processes. However, blending Lean and Six Sigma methods needs to be empirically tested across other sectors.

Practical implications

The proposed methodology, using a framework of Lean Six Sigma approaches, could be used to guide practitioners in addressing similar complex and recurring issues in the manufacturing sector.

Originality/value

This research introduces a novel approach to process analysis, selection and contextualised improvement using a combination of Lean Six Sigma™ tools, techniques and methodologies sustained within a supply chain with certified ISO 9001 quality management systems.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 19 December 2023

Kiran Marlapudi and Usha Lenka

Emphasizing the increasing role of talent management (TM) as a global phenomenon and a source of sustainable competitive advantage for organizations, this study aims to present a…

Abstract

Purpose

Emphasizing the increasing role of talent management (TM) as a global phenomenon and a source of sustainable competitive advantage for organizations, this study aims to present a scoping review of empirical literature on TM, examining the transition of TM from a phenomenon-driven to a theory-driven field.

Design/methodology/approach

Using a scoping review, this study analyzed 200 empirical studies published between 2010 and 2023 on TM.

Findings

The results indicate that TM is extensively studied in nationally operated, large, private, engineering-led organizations in Anglo-Saxon countries. The study highlights the necessity for more empirical studies and statistically robust evidence to establish the effectiveness of TM.

Research limitations/implications

This review intends to provide a vision and direction for future researchers, guiding TM towards becoming a theory-driven field characterized by widely accepted theoretical frameworks and research designs.

Practical implications

The findings of this study may not be generalizable to other types of organizations or cultural contexts, as it primarily focused on large private engineering-led organizations in Anglo-Saxon countries.

Originality/value

This paper offers a comprehensive view of the definitions, contextualization, conceptualization, frameworks, practices, processes and under-explored areas of TM, which are essential for its development as a discipline.

Details

The Learning Organization, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-6474

Keywords

Article
Publication date: 23 November 2022

Chetan Jalendra, B.K. Rout and Amol Marathe

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging…

Abstract

Purpose

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging due to transient disturbance. The transient disturbance causes vibration in the flexible object during robotic manipulation and assembly. This is an important problem as the quick suppression of undesired vibrations reduces the cycle time and increases the efficiency of the assembly process. Thus, this study aims to propose a contactless robot vision-based real-time active vibration suppression approach to handle such a scenario.

Design/methodology/approach

A robot-assisted camera calibration method is developed to determine the extrinsic camera parameters with respect to the robot position. Thereafter, an innovative robot vision method is proposed to identify a flexible beam grasped by the robot gripper using a virtual marker and obtain the dimension, tip deflection as well as velocity of the same. To model the dynamic behaviour of the flexible beam, finite element method (FEM) is used. The measured dimensions, tip deflection and velocity of a flexible beam are fed to the FEM model to predict the maximum deflection. The difference between the maximum deflection and static deflection of the beam is used to compute the maximum error. Subsequently, the maximum error is used in the proposed predictive maximum error-based second-stage controller to send the control signal for vibration suppression. The control signal in form of trajectory is communicated to the industrial robot controller that accommodates various types of delays present in the system.

Findings

The effectiveness and robustness of the proposed controller have been validated using simulation and experimental implementation on an Asea Brown Boveri make IRB 1410 industrial robot with a standard low frame rate camera sensor. In this experiment, two metallic flexible beams of different dimensions with the same material properties have been considered. The robot vision method measures the dimension within an acceptable error limit i.e. ±3%. The controller can suppress vibration amplitude up to approximately 97% in an average time of 4.2 s and reduces the stability time up to approximately 93% while comparing with control and without control suppression time. The vibration suppression performance is also compared with the results of classical control method and some recent results available in literature.

Originality/value

The important contributions of the current work are the following: an innovative robot-assisted camera calibration method is proposed to determine the extrinsic camera parameters that eliminate the need for any reference such as a checkerboard, robotic assembly, vibration suppression, second-stage controller, camera calibration, flexible beam and robot vision; an approach for robot vision method is developed to identify the object using a virtual marker and measure its dimension grasped by the robot gripper accommodating perspective view; the developed robot vision-based controller works along with FEM model of the flexible beam to predict the tip position and helps in handling different dimensions and material types; an approach has been proposed to handle different types of delays that are part of implementation for effective suppression of vibration; proposed method uses a low frame rate and low-cost camera for the second-stage controller and the controller does not interfere with the internal controller of the industrial robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 June 2023

Rubaya Rahat, Piyush Pradhananga and Mohamed ElZomor

With the increasing demand for sustainable developments, higher education should focus on teaching both sustainable buildings and infrastructure systems. This study aims to…

Abstract

Purpose

With the increasing demand for sustainable developments, higher education should focus on teaching both sustainable buildings and infrastructure systems. This study aims to investigate the existing sustainable infrastructure (SI) teaching efforts in sustainability courses; identify best practices to integrate SI throughout bachelor’s and master’s programs under the construction management (CM) curricula; and propose guidelines for students to obtain Envision sustainability professional (ENV SP) credential during sustainability education.

Design/methodology/approach

This study conducted keywords search within the sustainability course descriptions under the American Council for Construction Education accredited CM curricula to locate SI topics. Additionally, this research collected inputs from the Envision Academic Committee members to develop a matrix representing the best practices for integrating SI in higher education and provided a guide with a step-by-step procedure to obtain ENV SP credentials.

Findings

This study identified a gap regarding the availability of SI education and offered best practices on how CM curricula might nurture such knowledge. Phase I highlighted that only two CM programs taught infrastructure sustainability, and three programs offered sustainability credentialing processes under a bachelor’s degree. Phase II developed a framework that offered a variety of pedagogical approaches and outlined the process for obtaining the ENV SP certificate for CM students in the freshman, sophomore, junior and senior years.

Originality/value

The findings of this study can facilitate CM education to create awareness among the future workforce and encourage them to establish skills pertaining to the economic, social and environmental implications while designing SI.

Details

International Journal of Sustainability in Higher Education, vol. 24 no. 8
Type: Research Article
ISSN: 1467-6370

Keywords

Article
Publication date: 22 May 2023

Robert Bogue

This paper aims to illustrate the growing role of robots in the electronics industries.

Abstract

Purpose

This paper aims to illustrate the growing role of robots in the electronics industries.

Design/methodology/approach

Following a short introduction, this paper discusses robotic applications and products in three sectors of the electronics industry: semiconductor processing, printed circuit manufacture and electronic product assembly. Finally, conclusions are drawn.

Findings

The major application in semiconductor manufacture is the handling of silicon wafers during both front- and back-end processes and products include cleanroom certified multi-axis robotic arms, some mounted on mobile platforms, and automated guided vehicles. Applications in printed circuit board production include component handling and insertion, soldering, inspection, testing and packing. These exploit Cartesian, SCARA and six-axis articulated robots and cobots play an important role where automated and manual processes operate in close proximity. Electronic product assembly applications include part handling, soldering, bonding and sealing, screw driving, test and inspection and packaging. Cobots offer the benefits of a small footprint which allows deployment in the often limited space and use in proximity to humans. As yet, robotic assembly of complex electronic products such as smartphones and computers has not been realised for technical reasons.

Originality/value

This study provides a detailed review of robotic products and applications in three key sectors of the electronics industries.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 13 December 2023

Somayya Madakam, Rajeev Kumar Revulagadda, Vinaytosh Mishra and Kaustav Kundu

One of the most hyped concepts in the manufacturing industry is ‘Industry 4.0’. The ‘Industry 4.0’ concept is grabbing the attention of every manufacturing industry across the…

Abstract

One of the most hyped concepts in the manufacturing industry is ‘Industry 4.0’. The ‘Industry 4.0’ concept is grabbing the attention of every manufacturing industry across the globe because of its immense applications. This phenomenon is an advanced version of Industry 3.0, combining manufacturing processes and the latest Internet of Things (IoT) technologies. The main advantage of this paradigm shift is efficiency and efficacy in the manufacturing process with the help of advanced automated technologies. The concept of ‘Industry 4.0’ is contemporary, so it falls under exploratory study. Therefore, the research methodology is thematic narration grounded on secondary data (online) analysis. In this light, this chapter aims to explain ‘Industry 4.0’ in terms of concepts, theories and models based on the Web of Science (WoS) database. The data include research manuscripts, book chapters, blogs, white papers, news items and proceedings. The study details the latest technologies behind the ‘Industry 4.0’ phenomenon, different business intelligence technologies and their practical implications in some manufacturing industries. This chapter mainly elaborates on Industry 4.0 frameworks designed by (1) PwC (2) IBM (3) Frost & Sullivan.

Details

Fostering Sustainable Development in the Age of Technologies
Type: Book
ISBN: 978-1-83753-060-1

Keywords

Article
Publication date: 13 June 2023

Zhiwei Jiao, Zhongyu Zhuang, Li Hu, Ce Sun, Yuan Yu and Weimin Yang

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose…

Abstract

Purpose

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose deformation depends on altered structure or dimensions, and to provide new dimensions for the design of silicone soft structures.

Design/methodology/approach

A soft material three-dimensional printing platform with a dual-channel printing capability was designed and built. Using the material extrusion method, material screening was first performed using single-channel printing, followed by dual-channel-regulated printing experiments on products having different hardness and modulus values.

Findings

The proportion of additives has an effect on the accuracy of the printed product. Material screening revealed that Sylgard 527 and SE 1700 could be printed without additives. The hardness and mechanical properties of products are related to the percentage in their composition of hard and soft materials. The hardness of the products could be adjusted from 26A to 42A and the Young’s modulus from 0.875 to 2.378 Mpa.

Originality/value

Existing silicone products molded by casting or printing are mostly composed of a single material, whose uniform hardness and modulus cannot meet the demand for differentiated deformation in the structure. The existing multihardness silicone material printing method has the problems of long material mixing time and slow hardness switching and complicated multi-extrusion head switching. In this study, a simple, low-cost and responsive material extrusion-based hardness programmable preparation method for silicone materials is proposed.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 January 2024

Prihana Vasishta, Navjyoti Dhingra and Seema Vasishta

This research aims to analyse the current state of research on the application of Artificial Intelligence (AI) in libraries by examining document type, publication year, keywords…

Abstract

Purpose

This research aims to analyse the current state of research on the application of Artificial Intelligence (AI) in libraries by examining document type, publication year, keywords, country and research methods. The overarching aim is to enrich the existing knowledge of AI-powered libraries by identifying the prevailing research gaps, providing direction for future research and deepening the understanding needed for effective policy development.

Design/methodology/approach

This study used advanced tools such as bibliometric and network analysis, taking the existing literature from the SCOPUS database extending to the year 2022. This study analysed the application of AI in libraries by identifying and selecting relevant keywords, extracting the data from the database, processing the data using advanced bibliometric visualisation tools and presenting and discussing the results. For this comprehensive research, the search strategy was approved by a panel of computer scientists and librarians.

Findings

The majority of research concerning the application of AI in libraries has been conducted in the last three years, likely driven by the fourth industrial revolution. Results show that highly cited articles were published by Emerald Group Holdings Ltd. However, the application of AI in libraries is a developing field, and the study highlights the need for more research in areas such as Digital Humanities, Machine Learning, Robotics, Data Mining and Big Data in Academic Libraries.

Research limitations/implications

This study has excluded papers written in languages other than English that address domains beyond libraries, such as medicine, health, education, science and technology.

Practical implications

This article offers insight for managers and policymakers looking to implement AI in libraries. By identifying clusters and themes, the article would empower managers to plan ahead, mitigate potential drawbacks and seize opportunities for sustainable growth.

Originality/value

Previous studies on the application of AI in libraries have taken a broad approach, but this study narrows its focus to research published explicitly in Library and Information Science (LIS) journals. This makes it unique compared to previous research in the field.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Content available
Book part
Publication date: 18 September 2023

Patrik Schober

Abstract

Details

The Art of Leadership Through Public Relations
Type: Book
ISBN: 978-1-83753-630-6

1 – 10 of 88