Search results

1 – 10 of over 1000
Article
Publication date: 14 October 2020

Haiyan Ge, Xintian Liu, Yu Fang, Haijie Wang, Xu Wang and Minghui Zhang

The purpose of this paper is to introduce error ellipse into the bootstrap method to improve the reliability of small samples and the credibility of the S-N curve.

Abstract

Purpose

The purpose of this paper is to introduce error ellipse into the bootstrap method to improve the reliability of small samples and the credibility of the S-N curve.

Design/methodology/approach

Based on the bootstrap method and the reliability of the original samples, two error ellipse models are proposed. The error ellipse model reasonably predicts that the discrete law of expanded virtual samples obeys two-dimensional normal distribution.

Findings

By comparing parameters obtained by the bootstrap method, improved bootstrap method (normal distribution) and error ellipse methods, it is found that the error ellipse method achieves the expansion of sampling range and shortens the confidence interval, which improves the accuracy of the estimation of parameters with small samples. Through case analysis, it is proved that the tangent error ellipse method is feasible, and the series of S-N curves is reasonable by the tangent error ellipse method.

Originality/value

The error ellipse methods can lay a technical foundation for life prediction of products and have a progressive significance for the quality evaluation of products.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 March 2014

Jinghu Ji, Yonghong Fu and Qinsheng Bi

– The purpose of this paper is to investigate a partially textured slider of infinite width with orientation ellipse dimples in liquid application.

Abstract

Purpose

The purpose of this paper is to investigate a partially textured slider of infinite width with orientation ellipse dimples in liquid application.

Design/methodology/approach

In this paper, the pressure distribution of lubrication between a partially textured slider and a smooth sliding slider is calculated by the multi-grid method. For the same dimple area, the influence of the ellipse dimple with geometric parameters, and distribution and orientation on the hydrodynamic lubrication is evaluated in terms of the dimensionless average pressure for a given set of operating parameters.

Findings

In the present work, the magnitude of the dimensionless average pressure seems proportional to the slender ratio. Consequently, the slender ratio may be chosen as large as possible based on fabrication techniques. The longer axes of ellipse dimples placed parallel to the direction of sliding always show the better hydrodynamic effect. Furthermore, the results show that the ellipse dimples can greatly improve hydrodynamic effect of partially surface textured slider of infinite width by proper design of these texturing parameters.

Originality/value

This paper develops a partial surface texturing infinitely width slider with orientation ellipse dimples for improving hydrodynamic lubrication.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 1995

John M. Ting, Larry Meachum and Jeffrey D. Rowell

This paper presents the results of a Discrete Element Method study on the influence of particle shape on the strength and deformation behaviour of two dimensional assemblages of…

Abstract

This paper presents the results of a Discrete Element Method study on the influence of particle shape on the strength and deformation behaviour of two dimensional assemblages of ellipse‐shaped particles. Assemblages of particles with varying individual particle aspect ratio were formed with a preferred bedding plane, isotropically compressed with varying isotropic confining stresses and then sheared with biaxial compression. The results indicate that Discrete Element analysis using two dimensional ellipse‐shaped particles produces mechanical behaviour which is similar both quantitatively and qualitatively to the behaviour of real granular materials. Even small particle out‐of‐roundness increases the observed macroscopic strength significantly. In systems composed of flatter particles, particle rotations are greatly inhibited. Decomposing relative contact displacements into contributions due to particle rotation and translation demonstrates that most of the displacements in round particle systems are due to individual particle rotation.

Details

Engineering Computations, vol. 12 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2010

Xinrong Hu and Bugao Xu

The purpose of this paper is to develop a fast parameterized modeling approach to generate individualized dress forms for realistic human bodies.

1110

Abstract

Purpose

The purpose of this paper is to develop a fast parameterized modeling approach to generate individualized dress forms for realistic human bodies.

Design/methodology/approach

An individualized dress form is created by deriving a new set of fitting functions from a number of key existing dressing parameters and pre‐defined templates. The fitting functions only contain simple shapes of circular and/or elliptical arcs, which can be modified computationally based on a few personal dressing data.

Findings

This paper reaffirms that individual body shape can be adequately described by a number of critical cross‐section silhouettes, and a personalized dress form can be constructed based on key dressing parameters and templates.

Originality/value

The fitting functions and relevant dressing data for specific cross‐sectional silhouettes are determined, permitting a user to create personalized dress forms only by inputting a simple set of dressing parameters.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 January 2016

Jianhua Su, Zhi-Yong Liu, Hong Qiao and Chuankai Liu

Picking up pistons in arbitrary poses is an important step on car engine assembly line. The authors usually use vision system to estimate the pose of the pistons and then guide a…

Abstract

Purpose

Picking up pistons in arbitrary poses is an important step on car engine assembly line. The authors usually use vision system to estimate the pose of the pistons and then guide a stable grasp. However, a piston in some poses, e.g. the mouth of the piston faces forward, is hardly to be directly grasped by the gripper. Thus, we need to reorient the piston to achieve a desired pose, i.e. let its mouth face upward, for grasping.

Design/methodology/approach

This paper aims to present a vision-based picking system that can grasp pistons in arbitrary poses. The whole picking process is divided into two stages. At localization stage, a hierarchical approach is proposed to estimate the piston’s pose from image which usually involves both heavy noise and edge distortions. At grasping stage, multi-step robotic manipulations are designed to enable the piston to follow a nominal trajectory to reach to the minimum of the distance between the piston’s center and the support plane. That is, under the design input, the piston would be pushed to achieve a desired orientation.

Findings

A target piston in arbitrary poses would be picked from the conveyor belt by the gripper with the proposed method.

Practical implications

The designed robotic bin-picking system using vision is an advantage in terms of flexibility in automobile manufacturing industry.

Originality/value

The authors develop a methodology that uses a pneumatic gripper and 2D vision information for picking up multiple pistons in arbitrary poses. The rough pose of the parts are detected based on a hierarchical approach for detection of multiple ellipses in the environment that usually involve edge distortions. The pose uncertainties of the piston are eliminated by multi-step robotic manipulations.

Details

Industrial Robot: An International Journal, vol. 43 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 April 2023

Fatimah De’nan, Nor Salwani Hashim and Ngo Siew Ting

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high…

Abstract

Purpose

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high strength to weight ratio properties. However, the rise on the price of steel section should be more emphasized; therefore, the optimization in steel section design is needed to overcome the issue of material cost. As such, tapered steel sections save on material use, while the introduction of web openings allows the placement of mechanical and electrical services, plumbing and also aesthetic design considerations.

Design/methodology/approach

The purpose of this study is to investigate the lateral torsional buckling behavior of a tapered steel section with an ellipse-shaped opening by analyzing its structural parameters. To achieve this, the finite element analysis (FEA) of the section is modeled using LUSAS software, which allows for a detailed analysis of the section's behavior under varying loads and conditions. It involves the variation in web opening size, opening layout, opening rotation angle and the tapering ratio. Eigenvalue buckling analysis is adopted to know the parametric effects of each 108 model. The size of opening varies from 0.2 to 0.5 d of the total depth where the opening located. There are three type of layouts applied in this study, which are the layouts A, B and C. There are three types of rotation angles for the ellipse-shaped opening, including the non-rotated vertical opening and two additional types formed by rotating the opening 45 degrees clockwise and counterclockwise around the center-point of the ellipse. A fixed-free boundary condition was applied, resulting in a simulation of a cantilever beam. The models are fixed at one end with a larger depth, and free at the other end with a smaller depth. Loading condition is an application of 10 kN/m uniform distributed load in the direction of gravity along the mid-span of the top flange.

Findings

It is observed that the model 82 with Layout A, tapering ratio 0.3, opening size 0.5 d and opening rotated in 45 degree anti-clockwise direction results in the highest structural efficiency among the 108 models. Therefore, the buckling moment of model 82 is 1,013.08 kNm with structural efficiency of 481.26, which shows an increase of 3.17% compared to the controlled model.

Originality/value

The FEA results shows a significant increase in ductility and stiffness of the tapered steel section with elipse shape opening and consequently changes in the behaviour of yield point.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 December 2022

Jiaru Shao, Xueping Mo, Zijun Zheng and Yu Yang

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great…

Abstract

Purpose

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great significance to study the jet noise characteristics of double S-bend nozzles.

Design/methodology/approach

The multiparameter coupling and super-ellipse design methods are used to design the cross section of double S-bend nozzle. Taking unsteady flow information as the equivalent sound source, the noise signal at the far-field monitoring points were calculated with Ffowcs Williams–Hawkings (FW–H) method, and then, the sound source characteristics of the double S-bend nozzle are analyzed.

Findings

The results show that the internal flow of the S-bend nozzle with rectangular section is smoothed and the aerodynamic performance is better than super-ellipse section, the shear layer length of rectangular section is longer, the thickness is smaller and the mixing ability is stronger. The sound pressure level of the two S-bend nozzles decreases with the increase of the monitoring angle, and the sound pressure on the horizontal plane is greater than the vertical plane. In the direction of 40°–120°, the jet noise of rectangular nozzle is smaller, and the multiparameter coupled rectangular cross section structure is more applicable.

Practical implications

It is beneficial to reduce the jet noise of the engine tail nozzle and improve the stealth performance of the aircraft.

Originality/value

There is very little research on the jet noise characteristics of the double S-bend nozzle. The multiparameter coupling and the super-ellipse method are used to design the nozzle flow section to study the aerodynamic performance and jet noise characteristics of the double S-bend nozzle and to improve the acoustic stealth characteristics of the aircraft.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 January 2021

BinBin Zhang, Fumin Zhang and Xinghua Qu

Laser-based measurement techniques offer various advantages over conventional measurement techniques, such as no-destructive, no-contact, fast and long measuring distance. In…

Abstract

Purpose

Laser-based measurement techniques offer various advantages over conventional measurement techniques, such as no-destructive, no-contact, fast and long measuring distance. In cooperative laser ranging systems, it’s crucial to extract center coordinates of retroreflectors to accomplish automatic measurement. To solve this problem, this paper aims to propose a novel method.

Design/methodology/approach

We propose a method using Mask RCNN (Region Convolutional Neural Network), with ResNet101 (Residual Network 101) and FPN (Feature Pyramid Network) as the backbone, to localize retroreflectors, realizing automatic recognition in different backgrounds. Compared with two other deep learning algorithms, experiments show that the recognition rate of Mask RCNN is better especially for small-scale targets. Based on this, an ellipse detection algorithm is introduced to obtain the ellipses of retroreflectors from recognized target areas. The center coordinates of retroreflectors in the camera coordinate system are obtained by using a mathematics method.

Findings

To verify the accuracy of this method, an experiment was carried out: the distance between two retroreflectors with a known distance of 1,000.109 mm was measured, with 2.596 mm root-mean-squar error, meeting the requirements of the coarse location of retroreflectors.

Research limitations/implications

The research limitations/implications are as follows: (i) As the data set only has 200 pictures, although we have used some data augmentation methods such as rotating, mirroring and cropping, there is still room for improvement in the generalization ability of detection. (ii) The ellipse detection algorithm needs to work in relatively dark conditions, as the retroreflector is made of stainless steel, which easily reflects light.

Originality/value

The originality/value of the article lies in being able to obtain center coordinates of multiple retroreflectors automatically even in a cluttered background; being able to recognize retroreflectors with different sizes, especially for small targets; meeting the recognition requirement of multiple targets in a large field of view and obtaining 3 D centers of targets by monocular model-based vision.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 April 2021

Gamini Lanarolle

The purpose of this paper is to develop mathematical relationships to calculate the loop length to knit compact plain knitted fabrics and to validate the model using the fabric…

Abstract

Purpose

The purpose of this paper is to develop mathematical relationships to calculate the loop length to knit compact plain knitted fabrics and to validate the model using the fabric parameters of commercial fabrics.

Design/methodology/approach

Ellipse defines the shape of the head of a knitted loop and straight lines define the arms of a knitted loop. The mathematical relationships developed relate the yarn count to the loop length of compact knitted fabrics. The experimental data and the data from previous similar research validate the accuracy of the mathematical model.

Findings

The model can calculate loop lengths to knit compact plain knitted fabrics in terms of thickness of the yarn and the coefficient defined to express the ratio of minor axis to major axis of the ellipse that defines the shape of the head of the loop. The mathematical model can deliver several loop lengths to produce compact plain knitted fabrics for different values of this coefficient. For commercial fabrics the error of the model was 0.53%.

Originality/value

The present model defines the head of the loop as an ellipse. The uniqueness of the present model is that several ellipses can exist for any given yarn thickness for a range of values assigned to the minor axis of the ellipse. The accuracy of the model against experimental data ascertains that the model is closer to the reality for commercial fabrics and proves the uniqueness of the model. Further, this model is an ideal and a simple model to introduce knitted loop configurations in teaching knitted fabric geometry.

Details

Research Journal of Textile and Apparel, vol. 25 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 June 2019

Jieyu Zhang, Yuanying Qiu, Xuechao Duan and Changqi Yang

Cylindrical components are common in industry assembly areas. It is necessary to obtain their precise positions and orientations for their assemblies. But some measurement…

Abstract

Purpose

Cylindrical components are common in industry assembly areas. It is necessary to obtain their precise positions and orientations for their assemblies. But some measurement approaches relying on measuring targets are not allowed, as they may not meet the efficiency requirement of on-line measurement or may cause surface damages to the components. Thus, this paper aims to provide a precise on-line non-target scanning method based on 3D vision.

Design/methodology/approach

First, a laser profile sensor is used to acquire point cloud of the side surface of the measured cylindrical component. Then a composite process is conducted to estimate the pose and position of the axis. Aiming at this purpose, two fitting approaches, i.e., axis fitting and generatrix fitting, are tried respectively to estimate the pose parameters from the point cloud.

Findings

The results of Monte Carlo simulations demonstrate that neither the axis fitting nor the generatrix fitting could solely obtain the needed accuracy and precisions roundly. Thus, a new synthesis method is presented. And the results of prototype experiments validate the excellent accuracy and precision of the synthesis method.

Originality/value

This proposed new synthesis method combines the advantages of both the above fitting methods and can be easily integrated into the assembly line to guide the automation assembly process of the cylindrical components precisely.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 1000