Search results

1 – 10 of 17
Article
Publication date: 17 May 2023

Rajini V., Jassem M., Nagarajan V.S., Sreeya Galla N.V. Sai and Jeyapradha Rb

Industrial drives require appropriate control systems for reliable and efficient performance. With synchronous reluctance machines (SynRMs) slowly replacing the most commonly used…

Abstract

Purpose

Industrial drives require appropriate control systems for reliable and efficient performance. With synchronous reluctance machines (SynRMs) slowly replacing the most commonly used induction, switched reluctance and permanent magnet machines, it is essential that the drive and its control be properly selected for enhanced performance. But the major drawback of synchronous reluctance motor is the presence of high torque ripple as its design is characterized by large number of variables. The solutions to reduce torque ripple include design modifications, choice of proper power electronic inverter and PWM strategy. But little has been explored about the power electronic inverters suited for synchronous reluctance motor drive to minimize torque ripple inherently by obtaining a more sinusoidal voltage. The purpose of this paper is to elaborate on the potential multilevel inverter topologies applicable to SynRM drives used in solar pumping applications.

Design/methodology/approach

The most significant field-oriented control using maximum torque per ampere algorithm for maximizing the torque production is used for the control of SynRM. Simulation results carried out using Matlab/Simulink are presented to justify the choice of inverter and its control technique for SynRM.

Findings

The five-level inverter drive gives lesser core or iron losses in the SynRMin comparison to the three- and two-level inverters due to lower Id current ripple. The five-level inverter reduces the torque ripple of the SynRM significantly in comparison to the three- and two-level inverter fed SynRM drives. The phase disposition-PWM control method used for the inverter shows the least total harmonic distortion (THD) levels in output voltage compared with the other level shifted PWM techniques.

Originality/value

Among the available topologies, a fitting topology is proposed for use for the SynRM drive to have minimal THD, minimal current and torque ripple. Additionally, this paper presents various modulation techniques available for the selected drive system and reports on a suitable technique based on minimal THD of output voltage and hence minimal torque ripple.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 September 2023

Esra Kandemir Beser

The purpose of this study is to create an extended equivalent circuit model for a compound DC motor, consisting completely of electrical parameters and quantities.

Abstract

Purpose

The purpose of this study is to create an extended equivalent circuit model for a compound DC motor, consisting completely of electrical parameters and quantities.

Design/methodology/approach

The dynamic model of the compound DC motor is obtained by establishing the voltage equations for the armature and excitation circuit and the mechanical equation for the mechanical part. The mechanical parameters in the dynamic model are converted into electrical parameters with an electrical circuit proposed for the mechanical part. By combining the armature and excitation circuits with the electrical circuit created for the mechanical part, the extended equivalent circuit model of the compound DC motor is obtained. Because the proposed extended equivalent model is completely an electrical circuit, simulations can be made in the circuit simulation programme. Simulations of the proposed compound DC motor circuit were carried out, and the accuracy of the proposed circuit was verified by performing experimental studies with an existing compound motor.

Findings

When comparing speed and current profiles in experiments and simulations, it is seen that compound DC motor can be modelled with the proposed equivalent circuit including completely electrical elements in a simulation programme for the circuits. The results show that the proposed equivalent circuit satisfies the dynamic model of the compound motor.

Originality/value

In DC machine models, armature and excitation circuits are given as an electrical circuit, and mechanical part of the machine is modelled by only mechanical equations. The originality of this study is converting the dynamic model of an electrical machine consisting of electrical and mechanical equations into a completely electrical circuit. With the proposed method, the dynamic model of many motors can be converted into a completely electrical circuit. In this way, motors can be simulated as an electrical circuit in simulation programmes for the circuits, and the dynamic behaviour of motors can be obtained.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 April 2024

Guanglu Yang, Si Chen, Jianwei Qiao, Yubao Liu, Fuwen Tian and Cunxiang Yang

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet…

Abstract

Purpose

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet synchronous motor (HVLSPMSMS).

Design/methodology/approach

In this paper, the ampere–conductor wave model of HVLSPMSM after ITSF is established. Second, a mathematical model of the magnetic field after ITSF is established, and the influence law of the ITSF on the air-gap magnetic field is analyzed. Further, the mathematical expression of the electromagnetic force density is established based on the Maxwell tensor method. The impact of HVLSPMSM torque ripple frequency, radial electromagnetic force spatial–temporal distribution and rotor unbalanced magnetic tension force by ITSF is revealed. Finally, the electromagnetic–mechanical coupling model of HVLSPMSM is established, and the vibration spectra of the motor with different degrees of ITSF are solved by numerical calculation.

Findings

In this study, it is found that the 2np order flux density harmonics and (2 N + 1) p order electromagnetic forces are not generated when ITSF occurs in HVLSPMSM.

Originality/value

By analyzing the multi-harmonics of HVLSPMSM after ITSF, this paper provides a reliable method for troubleshooting from the perspective of vibration and torque fluctuation and rotor unbalanced electromagnetic force.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 June 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Fabrizio Marignetti and Pierluigi Siano

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as…

Abstract

Purpose

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion). The dynamic model of VSI-PMSMs is multivariable and exhibits complicated nonlinear dynamics. The inverters’ currents, which are generated through a pulsewidth modulation process, are used to control the stator currents of the PMSM, which in turn control the rotational speed of this electric machine. So far, several nonlinear control schemes for VSI-PMSMs have been developed, having as primary objectives the precise tracking of setpoints by the system’s state variables and robustness to parametric changes or external perturbations. However, little has been done for the solution of the associated nonlinear optimal control problem. The purpose of this study/paper is to provide a novel nonlinear optimal control method for VSI-fed three-phase PMSMs.

Design/methodology/approach

The present article proposes a nonlinear optimal control approach for VSI-PMSMs. The nonlinear dynamic model of VSI-PMSMs undergoes approximate linearization around a temporary operating point, which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the voltage source inverter-fed PMSM state vector and by the last sampled value of the motor’s control input vector. The linearization relies on Taylor series expansion and the calculation of the system’s Jacobian matrices. For the approximately linearized model of the voltage source inverter-fed PMSM, an H-infinity feedback controller is designed. For the computation of the controller’s feedback gains, an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system, the H-infinity Kalman filter is proposed as a state observer. The proposed control method achieves fast and accurate tracking of the reference setpoints of the VSI-fed PMSM under moderate variations of the control inputs.

Findings

The proposed H-infinity controller provides the solution to the optimal control problem for the VSI-PMSM system under model uncertainty and external perturbations. Actually, this controller represents a min–max differential game taking place between the control inputs, which try to minimize a cost function that contains a quadratic term of the state vector’s tracking error, the model uncertainty, and exogenous disturbance terms, which try to maximize this cost function. To select the feedback gains of the stabilizing feedback controller, an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. To analyze the stability properties of the control scheme, the Lyapunov method is used. It is proven that the VSI-PMSM loop has the H-infinity tracking performance property, which signifies robustness against model uncertainty and disturbances. Moreover, under moderate conditions, the global asymptotic stability properties of this control scheme are proven. The proposed control method achieves fast tracking of reference setpoints by the VSI-PMSM state variables, while keeping also moderate the variations of the control inputs. The latter property indicates that energy consumption by the VSI-PMSM control loop can be minimized.

Practical implications

The proposed nonlinear optimal control method for the VSI-PMSM system exhibits several advantages: Comparing to global linearization-based control methods, such as Lie algebra-based control or differential flatness theory-based control, the nonlinear optimal control scheme avoids complicated state variable transformations (diffeomorphisms). Besides, its control inputs are applied directly to the initial nonlinear model of the VSI-PMSM system, and thus inverse transformations and the related singularity problems are also avoided. Compared with backstepping control, the nonlinear optimal control scheme does not require the state-space description of the controlled system to be found in the triangular (backstepping integral) form. Compared with sliding-mode control, there is no need to define in an often intuitive manner the sliding surfaces of the controlled system. Finally, compared with local model-based control, the article’s nonlinear optimal control method avoids linearization around multiple operating points and does not need the solution of multiple Riccati equations or LMIs. As a result of this, the nonlinear optimal control method requires less computational effort.

Social implications

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion), The solution of the associated nonlinear control problem enables reliable and precise functioning of VSI-fd PMSMs. This in turn has a positive impact in all related industrial applications and in tasks of electric traction and propulsion where VSI-fed PMSMs are used. It is particularly important for electric transportation systems and for the wide use of electric vehicles as expected by green policies which aim at deploying electromotion and at achieving the Net Zero objective.

Originality/value

Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system’s state vector and by the last sampled value of the control input vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation, which is used for computing the feedback gains of the controller, is new, as is the global stability proof for this control method. Comparing with nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems that can be transformed to the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2024

Gerasimos G. Rigatos, Pierluigi Siano, Mohammed S. Al-Numay, Bilal Sari and Masoud Abbaszadeh

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet…

Abstract

Purpose

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet synchronous motors and five-phase asynchronous induction motors (IMs) are among the types of multiphase motors one can consider for the traction system of electric vehicles (EVs). By distributing the required power in a large number of phases, the power load of each individual phase is reduced. The cumulative rates of power in multiphase machines can be raised without stressing the connected converters. Multiphase motors are also fault tolerant because such machines remain functional even if failures affect certain phases.

Design/methodology/approach

A novel nonlinear optimal control approach has been developed for five-phase IMs. The dynamic model of the five-phase IM undergoes approximate linearization using Taylor series expansion and the computation of the associated Jacobian matrices. The linearization takes place at each sampling instance. For the linearized model of the motor, an H-infinity feedback controller is designed. This controller achieves the solution of the optimal control problem under model uncertainty and disturbances.

Findings

To select the feedback gains of the nonlinear optimal (H-infinity) controller, an algebraic Riccati equation has to be solved repetitively at each time-step of the control method. The global stability properties of the control loop are demonstrated through Lyapunov analysis. Under moderate conditions, the global asymptotic stability properties of the control scheme are proven. The proposed nonlinear optimal control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs.

Research limitations/implications

Comparing to other nonlinear control methods that one could have considered for five-phase IMs, the presented nonlinear optimal (H-infinity) control approach avoids complicated state-space model transformations, is of proven global stability and its use does not require the model of the motor to be brought into a specific state-space form. The nonlinear optimal control method has clear implementation stages and moderate computational effort.

Practical implications

In the transportation sector, there is progressive transition to EVs. The use of five-phase IMs in EVs exhibits specific advantages, by achieving a more balanced distribution of power in the multiple phases of the motor and by providing fault tolerance. The study’s nonlinear optimal control method for five-phase IMs enables high performance for such motors and their efficient use in the traction system of EVs.

Social implications

Nonlinear optimal control for five-phase IMs supports the deployment of their use in EVs. Therefore, it contributes to the net-zero objective that aims at eliminating the emission of harmful exhaust gases coming from human activities. Most known manufacturers of vehicles have shifted to the production of all-electric cars. The study’s findings can optimize the traction system of EVs thus also contributing to the growth of the EV industry.

Originality/value

The proposed nonlinear optimal control method is novel comparing to past attempts for solving the optimal control problem for nonlinear dynamical systems. It uses a novel approach for selecting the linearization points and a new Riccati equation for computing the feedback gains of the controller. The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 November 2023

Cheng Peng, He Cheng, Tong Zhang, Jing Wu, Fandi Lin and Jinglong Chu

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with…

54

Abstract

Purpose

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with hybrid PMs. This paper discusses the design experience of DSMMs and presents a comparative study of radial magnetization (RM) and circumferential magnetization (CM) types.

Design/methodology/approach

It begins with an introduction to RM and CM operating principles and magnetization mechanisms. Then, a comparative study is conducted for one of the RM-DSMM rotor pole pairs, inner and outer stator clamping angles and low coercive force PMs thickness. Finally, the two machines’ finite element simulation performance is compared. The validity of the proposed machine structure is demonstrated.

Findings

In this paper, the double-stator structure is extended to parallel hybrid PM memory machines, and two novel DSMMs with RM and CM configurations are proposed. Two types of DSMMs have PMs and magnetizing windings on the inner stator and armature windings on the outer stator. The main difference between the two is the arrangement of PMs on the inner stator.

Originality/value

Conventional stator PM memory machines have geometrical space conflicts between the PM and armature windings. The proposed double-stator structure can alleviate these conflicts and increase the torque density accordingly. In addition, this paper contributes to comparing the arrangement of hybrid PMs for DSMMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 December 2023

Peter Bannister, Elena Alcalde Peñalver and Alexandra Santamaría Urbieta

This purpose of this paper is to report on the development of an evidence-informed framework created to facilitate the formulation of generative artificial intelligence (GenAI…

Abstract

Purpose

This purpose of this paper is to report on the development of an evidence-informed framework created to facilitate the formulation of generative artificial intelligence (GenAI) academic integrity policy responses for English medium instruction (EMI) higher education, responding to both the bespoke challenges for the sector and longstanding calls to define and disseminate quality implementation good practice.

Design/methodology/approach

A virtual nominal group technique engaged experts (n = 14) in idea generation, refinement and consensus building across asynchronous and synchronous stages. The resulting qualitative and quantitative data were analysed using thematic analysis and descriptive statistics, respectively.

Findings

The GenAI Academic Integrity Policy Development Blueprint for EMI Tertiary Education is not a definitive mandate but represents a roadmap of inquiry for reflective deliberation as institutions chart their own courses in this complex terrain.

Research limitations/implications

If repeated with varying expert panellists, findings may vary to a certain extent; thus, further research with a wider range of stakeholders may be necessary for additional validation.

Practical implications

While grounded within the theoretical underpinnings of the field, the tool holds practical utility for stakeholders to develop bespoke policies and critically re-examine existing frameworks.

Social implications

As texts produced by students using English as an additional language are at risk of being wrongly accused of GenAI-assisted plagiarism, owing to the limited efficacy of text classifiers such as Turnitin, the policy recommendations encapsulated in the blueprint aim to reduce potential bias and unfair treatment of students.

Originality/value

The novel blueprint represents a step towards bridging concerning gaps in policy responses worldwide and aims to spark discussion and further much-needed scholarly exploration to this end.

Article
Publication date: 20 December 2023

Indira Damarla, Venmathi M., Krishnakumar V. and Anbarasan P.

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of…

Abstract

Purpose

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of FEC-based SR motor drive using various types of control schemes like conventional proportional integral (PI) controller, fuzzy logic controller (FLC) and fuzzy-tuned proportional integral controller (Fuzzy-PI).

Design/methodology/approach

The proposed FEC-based SR motor drive with various control strategies is derived for the torque ripple minimization and speed control.

Findings

The steady state and the dynamic response of the FEC-based SR motor drive are analyzed using three different controllers under change in speed and loading conditions. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller.

Originality/value

The hardware prototype has been implemented for the FEC-based SR motor drive by using the Xilinx SPARTAN 6 FPGA processor. The experimental verification has been conducted and the results have been measured under steady state and dynamic conditions.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 February 2023

Yiming Zhan, Hao Chen, Mengyu Hua, Jinfu Liu, Hao He, Patrick Wheeler, Xiaodong Li and Vitor Fernao Pires

The purpose of this paper is to achieve the multi-objective optimization design of novel tubular switched reluctance motor (TSRM).

Abstract

Purpose

The purpose of this paper is to achieve the multi-objective optimization design of novel tubular switched reluctance motor (TSRM).

Design/methodology/approach

First, the structure and initial dimensions of TSRM are obtained based on design criteria and requirements. Second, the sensitivity analysis rules, process and results of TSRM are performed. Third, three optimization objectives are determined by the average electromagnetic force, smoothing coefficient and copper loss ratio. The analytic hierarchy process-entropy method-a technique for order preference by similarity to an ideal solution-grey relation analysis comprehensive evaluation algorithm is used to optimize TSRM. Finally, a prototype is manufactured, a hardware platform is built and static and dynamic experimental validations are carried out.

Findings

The sensitivity analysis reveals that parameters significantly impact the performance of TSRM. The results of multi-objective optimization show that the average electromagnetic force and smoothing coefficient after optimization are better than before, and the copper loss ratio reduces slightly. The experimental and simulated results of TSRM are consistent, which verifies the accuracy of TSRM.

Research limitations/implications

In this paper, only three optimization objectives are selected in the multi-objective optimization process. To improve the performance of TSRM, the heating characteristics, such as iron loss, can be considered as the optimization objective for a more comprehensive analysis of TSRM performance.

Originality/value

A novel motor structure is designed, combining the advantages of the TSRM and the linear motor. The established sensitivity analysis rules are scientific and suitable for the effects of various parameters on motor performance. The proposed multi-objective optimization algorithm is a comprehensive evaluation algorithm. It considers subjective weight and objective weight and fully uses the original data and the relational degree between the optimization objectives.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2023

Javad Rahmani Fard, Saadat Jamali Arand and Siroos Hemmati

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching…

Abstract

Purpose

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching permanent magnet (YASA-AFFSPM) motor.

Design/methodology/approach

Based on the structural characteristics of the YASA-AFFSPM, a mathematical model is established to calculate the main size of the YASA-AFFSPM motor. The split ratio, stator axial length, sandwiching pole angle, rotor pole angle, PM arc and number of conductors per slot are selected as optimization variables. Also, the efficiency, power factor, cogging torque and average torque are considered as the optimization objectives. The objectives are optimized by combining the improved multiobjective PSO algorithm with electromagnetic calculation.

Findings

Based on the proposed algorithm, the investigated motor is optimized. The on-load efficiency, power factor and average torque of the motor performance have increased by 0.87%, 3.13% and 10.39%, respectively. Moreover, the cogging torque and slot fill factor have undergone decreases of 8.57% and 3.34%, respectively. Finally, the effectiveness of the algorithm is verified using experiment results.

Originality/value

So far, no comprehensive report has been observed on the optimization of the YASA-AFFSPM motor using evolutionary algorithms and the study of the effect of the motor parameters. Therefore, in this paper, the authors decided to investigate the effect of YASA-AFFSPM motor parameters and improve motor performance with the improved PSO method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 17